【題目】如圖,已知直線交拋物線于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使得直線與拋物線在點(diǎn)處的切線平行,設(shè)直線與拋物線交于、兩點(diǎn).
(1)記直線、的斜率分別為、,證明:;
(2)若,求的面積.
【答案】(1)見解析;(2).
【解析】
(1)設(shè),,,利用導(dǎo)數(shù)的幾何意義及直線的斜率公式求解;
(2)根據(jù)及,可得,表示出、,再表示出,得到,設(shè)線段的中點(diǎn)為,求出,最后根據(jù)的中點(diǎn)與點(diǎn)的連線平行于軸,得,從而得結(jié)果.
(1)由得,,則.
設(shè)點(diǎn),由導(dǎo)數(shù)的幾何意義知,直線的斜率為.
由題意知點(diǎn).設(shè)點(diǎn)、,
則,即.
因?yàn)?/span>,,
所以;
(2)由且可知,,
不妨設(shè)點(diǎn)在上方,則,
直線的方程為.
由,得點(diǎn)的坐標(biāo)為.
所以,同理可得.
所以,得.
設(shè)線段的中點(diǎn)為,
則點(diǎn)的坐標(biāo)為,即,
連接,易知,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B兩同學(xué)參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測驗(yàn),成績(單位:分)記錄如下:
A 71 62 72 76 63 70 85 83
B 73 84 75 73 78 76 85
B同學(xué)的成績不慎被墨跡污染(,分別用m,n表示).
(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從A、B兩同學(xué)中選派一人去參加數(shù)學(xué)競賽,你認(rèn)為選派誰更好?請說明理由(不用計(jì)算);
(2)若B同學(xué)的平均分為78,方差,求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集,其中,且,若對,與兩數(shù)中至少有一個(gè)屬于,則稱數(shù)集具有性質(zhì).
(1)分別判斷數(shù)集與數(shù)集是否具有性質(zhì),說明理由;
(2)已知數(shù)集具有性質(zhì),判斷數(shù)列,,…,是否為等差數(shù)列,若是等差數(shù)列,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的準(zhǔn)線經(jīng)過點(diǎn),過的焦點(diǎn)作兩條互相垂直的直線,,直線與交于,兩點(diǎn),直線與交于,兩點(diǎn),則下列結(jié)論正確的是( )
A.B.的最小值為16
C.四邊形的面積的最小值為64D.若直線的斜率為2,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)F2是雙曲線的右焦點(diǎn),動點(diǎn)A在雙曲線左支上,直線l1:tx﹣y+t﹣2=0與直線l2:x+ty+2t﹣1=0的交點(diǎn)為B,則|AB|+|AF2|的最小值為( )
A.8B.C.9D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在黨中央的英明領(lǐng)導(dǎo)下,在全國人民的堅(jiān)定支持下,中國的抗擊“新型冠狀肺炎”戰(zhàn)役取得了階段性勝利,現(xiàn)在擺在我們大家面前的是有序且安全的復(fù)工復(fù)產(chǎn).某商場為了提振顧客的消費(fèi)信心,對某中型商品實(shí)行分期付款方式銷售,根據(jù)以往資料統(tǒng)計(jì),顧客購買該商品選擇分期付款的期數(shù)ξ的分布列為
其中0<a<1,0<b<1.
(1)求購買該商品的3位顧客中,恰有1位選擇分4期付款的概率;
(2)商場銷售一件該商品,若顧客選擇分4期付款,則商場獲得的利潤為2000元;若顧客選擇分5期付款,則商場獲得的利潤為2500元;若顧客選擇分6期付款,則商場獲得的利潤為3000元,假設(shè)該商場銷售兩件該商品所獲得的利潤為X(單位:元),
(i)設(shè)X=5500時(shí)的概率為m,求當(dāng)m取最大值時(shí),利潤X的分布列和數(shù)學(xué)期望;
(ii)設(shè)某數(shù)列{xn}滿足x1=0.4,xn=a,2xn+1=b,若a<0.25,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的兩焦點(diǎn)之間的距離為2,兩條準(zhǔn)線間的距離為8,直線l:y=k(x-m)(m∈R)與橢圓交于P,Q兩點(diǎn).
(1) 求橢圓C的方程;
(2) 設(shè)橢圓的左頂點(diǎn)為A,記直線AP,AQ的斜率分別為k1,k2.①若m=0,求k1k2的值;②若k1k2=-,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,是否存在q的某些取值,使數(shù)列中某一項(xiàng)能表示為另外三項(xiàng)之和?若能求出q的全部取值集合,若不能說明理由.
(3)若,是否存在,使數(shù)列中,某一項(xiàng)可以表示為另外三項(xiàng)之和?若存在指出q的一個(gè)取值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com