【題目】已知是函數(shù)與圖像上兩個(gè)不同的交點(diǎn),則的取值范圍為( )
A. B. C. D.
【答案】B
【解析】分析:把函數(shù)與圖象上兩個(gè)不同的交點(diǎn),轉(zhuǎn)化為方程a=xlnx的兩個(gè)解.利用導(dǎo)數(shù)研究函數(shù)y=xlnx的單調(diào)性,可得x1+x2的取值范圍,再由導(dǎo)數(shù)判定函數(shù)f(x)的單調(diào)性,即可求得f(x1+x2)的取值范圍.
詳解:令可得,
∴,是方程的兩個(gè)解.
令,則,
∴當(dāng)時(shí),,當(dāng)時(shí),,
∴在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,
∴的最小值為.
又當(dāng)時(shí),h(x)<0,當(dāng)時(shí),h(x)>0,
作出函數(shù)h(x)=xlnx的圖象如圖:
不妨設(shè)x1<x2,
由圖可知,0<x1<<x2<1.
∴
由,得,
當(dāng)x∈(0,)時(shí),,
∴f(x)在上為增函數(shù),
又,f(1)=0,
∴f(x1+x2)的取值范圍為.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產(chǎn)一批鋼管,為了了解這批產(chǎn)品的質(zhì)量狀況,檢驗(yàn)員隨機(jī)抽取了100件鋼管作為樣本進(jìn)行檢測(cè),將它們的內(nèi)徑尺寸作為質(zhì)量指標(biāo)值,由檢測(cè)結(jié)果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數(shù) | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計(jì) | 100 | 1 |
(1)求,;
(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:鋼管內(nèi)徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或為合格等級(jí),鋼管尺寸在為優(yōu)秀等級(jí),鋼管的檢測(cè)費(fèi)用為0.5元/根.
(i)若從和的5件樣品中隨機(jī)抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對(duì)該批剩余鋼管不再進(jìn)行檢測(cè),所有鋼管均以45元/根售出;
②對(duì)該批剩余鋼管一一進(jìn)行檢測(cè),不合格產(chǎn)品不銷售,合格等級(jí)的鋼管50元/根,優(yōu)等鋼管60元/根.
請(qǐng)你為該企業(yè)選擇最好的銷售方案,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sin(A﹣B), , =(1,2sinB),且 =﹣sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對(duì)的角. (Ⅰ)求角C的大。
(Ⅱ)若 ,且S△ABC= ,求邊c的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列說(shuō)法:
①它的極大值點(diǎn)為-3,極小值點(diǎn)為3;②它的單調(diào)遞減區(qū)間為[-2,2];
③方程有且僅有3個(gè)實(shí)根時(shí),的取值范圍是(18,54).
其中正確的說(shuō)法有( )個(gè)
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是( )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(3)在(2)條件下,若對(duì)任意的正數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com