【題目】關(guān)于函數(shù),有下列說法:
①它的極大值點(diǎn)為-3,極小值點(diǎn)為3;②它的單調(diào)遞減區(qū)間為[-2,2];
③方程有且僅有3個(gè)實(shí)根時(shí),的取值范圍是(18,54).
其中正確的說法有( )個(gè)
A. 0 B. 1 C. 2 D. 3
【答案】C
【解析】分析:求出函數(shù)f(x)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究f(x)的單調(diào)性和極值,再結(jié)合圖象判斷命題是否正確即可.
詳解:函數(shù),∴,
令,解得;
當(dāng)x<﹣3或x>3時(shí),f′(x)>0,f(x)單調(diào)遞增;
﹣3<x<3時(shí),f′(x)<0,f(x)單調(diào)遞減;
∴f(x)的極大值點(diǎn)為﹣3,極小值點(diǎn)為3,∴①正確;
f(x)的單調(diào)遞減區(qū)間為[﹣3,3],∴②錯(cuò)誤;
f(x)的極大值是,
極小值是,
畫出f(x)的圖象如圖所示,
∴方程f(x)=a有且僅有3個(gè)實(shí)根時(shí),
a的取值范圍是(18,54),③正確.
綜上,其中正確的說法是①③,共2個(gè).
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對心肺疾病入院的人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | A | ||
女 | |||
合計(jì) | B |
(1)根據(jù)已知條件求出上面的列聯(lián)表中的A和B;用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)為了研究心肺疾病是否與性別有關(guān),請計(jì)算出統(tǒng)計(jì)量,并說明是否有的把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) ,其中 .
(1)試討論函數(shù) 的單調(diào)性;
(2)已知當(dāng) (其中 是自然對數(shù)的底數(shù))時(shí),在 上至少存在一點(diǎn) ,使 成立,求 的取值范圍;
(3)求證:當(dāng) 時(shí),對任意 ,,有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1﹣x),f(﹣ )= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某幾何體的正視圖與側(cè)視圖都是邊長為1的正方形,且體積為 .則該幾何體的俯視圖可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學(xué)生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為等,小于80分者為等.
(1)求女生成績的中位數(shù)及男生成績的平均數(shù);
(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?
(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)請結(jié)合所給表格,在所給的坐標(biāo)系中作出函數(shù)一個(gè)周期內(nèi)的簡圖;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求的最大值和最小值及相應(yīng)的取值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com