已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x0∈[
1
e
,e](e是自然對(duì)數(shù)的底數(shù),e=2.71828…),使不等式2f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由已知知函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)=lnx+1,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)在[t,t+2](t>0)上的最小值.
(2)由已知得a≤2lnx+x+
3
x
,x∈[
1
e
,e],設(shè)h(x)=2lnx+x+
3
x
,x∈[
1
e
,e],則h(x)=
(x+3)(x-1)
x2
,x∈[
1
e
,e],由此利用導(dǎo)數(shù)性質(zhì)能求出實(shí)數(shù)a的取值
解答: 解:(1)由已知知函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)=lnx+1,
當(dāng)x∈(0,
1
e
),f′(x)<0,f(x)單調(diào)遞減,
當(dāng)x∈(
1
e
,+∞
),f′(x)>0,f(x)單調(diào)遞增,
①0<t<t+2<
1
e
,沒有最小值;
②0<t<
1
e
<t+2,即0<t<
1
e
時(shí),f(x)min=f(
1
e
)=-
1
e
;
1
e
≤t<t+2
,即t
1
e
時(shí),f(x)在[t,t+2]上單調(diào)遞增,f(x)min=f(t)=tlnt.
f(x)min=
-
1
e
,0<t<
1
e
tlnt,t≥
1
e

(2)∵不等式2f(x0)≥g(x0)成立,即2x0lnx0≥-x02+ax0-3,
∴a≤2lnx+x+
3
x
,x∈[
1
e
,e],
設(shè)h(x)=2lnx+x+
3
x
,x∈[
1
e
,e],
h(x)=
(x+3)(x-1)
x2
,x∈[
1
e
,e],
①x∈[
1
e
,1)時(shí),h′(x)<0,h(x)單調(diào)遞減,
②x∈(1,e]時(shí),h′(x)>0,h(x)單調(diào)遞增,
∴h(x)min=h(1)=4,對(duì)一切x0∈[
1
e
,e]使不等式2f(x0)≥g(x0)成立,
∴a≤h(x)min=4.
點(diǎn)評(píng):本題重點(diǎn)考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),利用函數(shù)的性質(zhì)解決不等式、方程問題.重點(diǎn)考查學(xué)生的代數(shù)推理論證能力.解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)復(fù)數(shù)z=
1
1-i
為( 。
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、1-i
D、1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C的方程為ρ=2acosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=3t+2
y=4t+2
(t為參數(shù)).
(Ⅰ)若直線l與圓C相切,求實(shí)數(shù)a的值;
(Ⅱ)若直線l過點(diǎn)(a,a),求直線l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性.
(1)y=
1-cosx
+
cosx-1
;
(2)y=sin(
3x
4
+
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為2,AB是直徑,CD是弦,直線CD交AB延長(zhǎng)線于點(diǎn)P,
AE
=
AC
,ED交AB于點(diǎn)F.
(1)求證:PF•PO=PB•PA;
(2)若PB=2BF,試求PB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x)=2x-x2
(1)求f(x)=-3的根;    
(2)當(dāng)x∈[-1,2]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ex

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)過點(diǎn)P(0,
4
e2
)作直線y=f(x)相切,求證:這樣的直線l至少有兩條,且這些直線的斜率之和m∈(
e2-1
e2
,
2e2-1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx+1).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性;
(Ⅲ)如果在公共定義域D上的函數(shù)f(x),f1(x),f2(x)滿足f1(x)<f(x)<f2(x),那么就稱f(x)為f1(x)、f2(x)的“可控函數(shù)”.已知函數(shù)f1(x)=xlnx-a2lnx-
1
2
x2+(2a+1)x,f2(x)=x3+x+a,若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x)、f2(x)的“可控函數(shù)”,求實(shí)數(shù)a的取范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第三象限角,f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)

(Ⅰ)化簡(jiǎn)f(α);
(Ⅱ)若cos(α-
2
)=
3
4
,求f(2π+α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案