考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的定義域,判斷定義域是否關(guān)于原點(diǎn)對(duì)稱,再驗(yàn)證f(-x)與f(x)的關(guān)系,進(jìn)而判斷函數(shù)的奇偶性.
解答:
解:(1)要使函數(shù)有意義,必有cosx=1,即x=2kπ,k∈Z,
又y=0,
故y=
+
既是奇函數(shù)又是偶函數(shù);
(2)f(x)y=sin(
+
)的定義域?yàn)镽,
又f(x)=y=sin(
+
)=-cos
,
f(-x)=-
cos=cos=f(x),
故y=sin(
+
)是偶函數(shù).
故答案為:(1)既是奇函數(shù)又是偶函數(shù)
(2)偶函數(shù)
點(diǎn)評(píng):判斷一個(gè)函數(shù)是否具有奇偶性,先求出定義域,判斷定義域是否關(guān)于原點(diǎn)對(duì)稱,若不關(guān)于原點(diǎn)對(duì)稱函數(shù)不具有奇偶性;若關(guān)于原點(diǎn)對(duì)稱,再驗(yàn)證f(-x)與f(x)的關(guān)系.