如圖,已知中,弦,直徑. 過點的切線,交的延長線于點,.則____  .
2

試題分析:連接,因為直徑,為圓上一點,所以,由弦切角定理可得,所以,所以,所以,所以.在直角三角形中可得,所以。由切割線定理可得,即,將,代入上式可得,解得。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,PA,PB切⊙O于A,B兩點,BC∥PA交⊙O于C,MC∥AB交⊙O于D,交PB,PA的延長線于M,Q.
(1)求證:AD∥PM
(2)設(shè)⊙O的半徑長為1,PA=PB=2,求CD的長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為半圓的直徑,為半圓上一點,過點作半圓的切線,過點作,交半圓于點,

(1)證明:平分;
(2)求的長.                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點為F,點K(-1,0)為直線l與拋物線C準線的交點.直線l與拋物線C相交于A,B兩點,點A關(guān)于x軸的對稱點為D.
(1)求拋物線C的方程;
(2)設(shè)
FA
FB
=
8
9
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知在?ABCD中,O1,O2,O3為對角線BD上三點,且BO1=O1O2=O2O3=O3D,連接AO1并延長交BC于點E,連接EO3并延長交AD于F,則AD∶FD等于(  )
A.19∶2B.9∶1
C.8∶1D.7∶1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知AB為圓O的直徑,AB=4,C為半圓上一點,過點C作圓O的切線CD,過點A作ADCD于D,交圓O于點E,DE=1,則BC的長為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2012•廣東)(幾何證明選講選做題)如圖,圓O中的半徑為1,A、B、C是圓周上的三點,滿足∠ABC=30°,過點A作圓O的切線與 O C 的延長線交于點P,則圖PA= _________ 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點,CD⊥AB,垂足為D,已知AD=2,CB=4,則CD=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的長.

查看答案和解析>>

同步練習冊答案