如圖,PA,PB切⊙O于A,B兩點,BC∥PA交⊙O于C,MC∥AB交⊙O于D,交PB,PA的延長線于M,Q.
(1)求證:AD∥PM
(2)設⊙O的半徑長為1,PA=PB=2,求CD的長
(1)見解析
(2)
(1)∵PA,PB切⊙O于A,B兩點,
∴∠PBA=∠PAB
又BC∥PA
∴∠PAB=∠ABC
又∠ADC=∠ABC(同弧所對的圓周角相等)
∴∠PBA=∠ADC
又AB∥MC
∴∠PBA=∠M
∴∠ADC=∠M
∴AD∥PM
(2) 連接OP,OB,則OB⊥PB
∵OB=1,PB=2
∴OP=
∴AB=

連接AC
∵BC∥PQ
∴AC=AB=,∠CAQ=∠BAP
又AB∥CQ
∴∠Q=∠BAP,∴∠Q=∠CAQ,即CQ=CA=
顯然△PAB∽△CAQ
AQ=
由切割線定理得
AQ2=QC·QD()2=×QDQD==×<QC
∴CD=QC-QD=-×=×=(此時D點在AC弧上)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知PQ與圓O相切于點A,直線PBC交圓于B、C兩點,D是圓上一點,且AB∥CD,DC的延長線交PQ于點Q.
(1)求證:
(2)若AQ=2AP,AB=,BP=2,求QD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在梯形ABCD中,點E、F分別在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求證:(m+n)EF=mBC+nAD.你能由此推導出梯形的中位線公式嗎?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩定點E(-
2
,0),F(xiàn)(
2
,0)
,動點P滿足
PE
PF
=0
,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PM
=(
2
-1)
MQ
,點M的軌跡為C.
(I)求曲線C的方程;
(II)若線段AB是曲線C的一條動弦,且|AB|=2,求坐標原點O到動弦AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,矩形ABCD中,E是BC上的點,AE⊥DE,BE=4,EC=1,則AB的長為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若鈍角三角形三邊長為,則的取值范圍是              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,與圓相切于,直線交圓,兩點,,垂足為,且的中點,若,則      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知中,弦,直徑. 過點的切線,交的延長線于點.則____  .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,PAB、PCD是圓的兩條割線,已知PA=6,AB=2,PC=CD.則PD=________.

查看答案和解析>>

同步練習冊答案