【題目】設(shè)命題p:關(guān)于x的二次方程x2(a1)xa20的一個(gè)根大于零,另一根小于零;命題q:不等式2x2x>2ax對(duì)x(,-1)恒成立.如果命題pq為真命題,命題pq為假命題,求實(shí)數(shù)a的取值范圍.

【答案】(1)[2,+∞)

【解析】試題分析:對(duì)于命題:令,由于關(guān)于的二次方程的一個(gè)根大于零,另一根小于零,可得;對(duì)于命題:由于,由不等式可得: ,利用函數(shù)的單調(diào)性即可得出的取值范圍;由于命題“”為真命題,命題“”為假命題,可得必然一真一假.

試題解析:令,∵二次方程的一個(gè)根大于零,另一根小于零,∴,即,,∴命題為真時(shí),有,,∴由不等式,可得,,單調(diào)遞增,且,,又不等式對(duì)恒成立,∴命題為真時(shí),有依題意,命題為真命題,命題為假命題,則有①若假,得;②若真,得,綜上可得,所求實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)選修4-2:矩陣與變換

求矩陣的特征值和特征向量.

(2)選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,圓的參數(shù)方程是參數(shù)),若圓與圓相切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>A的函數(shù)f(x),若對(duì)任意的x1,x2A,都有f(x1x2)f(x1)≤f(x2),則稱函數(shù)f(x)定義域上的M函數(shù),給出以下五個(gè)函數(shù):

f(x)2x3xR;f(x)x2,x;f(x)x21,x;f(x)sin x,xf(x)log2x,x[2,+∞)

其中是定義域上的M函數(shù)的有(  )

A. 2個(gè) B. 3個(gè)

C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),設(shè),若有兩個(gè)相異零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中, , , ,四邊形是正方形,二面角的大小為

1)在線段上找出一點(diǎn),使得平面,并說明理由;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1時(shí),求上的單調(diào)區(qū)間;

2 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論錯(cuò)誤的是(  )

A. 命題“若x2-3x-4=0,則x=4”的逆否命題是“若x≠4,則x2-3x-4≠0”

B. 命題“若m>0,則方程x2xm=0有實(shí)根”的逆命題為真命題

C. x=4”是“x2-3x-4=0”的充分條件

D. 命題“若m2n2=0,則m=0且n=0”的否命題是“若m2n2≠0,則m≠0或n≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;

(2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案