【題目】為檢測(cè)空氣質(zhì)量,某市環(huán)保局隨機(jī)抽取了甲、乙兩地2016年20天的PM2.5日平均濃度(單位:微克/立方米)是監(jiān)測(cè)數(shù)據(jù),得到甲地PM2.5日平均濃度的頻率分布直方圖和乙地PM2.5日平均濃度的頻數(shù)分布表.
甲地20天PM2.5日平均濃度頻率分布直方圖
乙地20天PM2.5日平均濃度頻數(shù)分布表
(1)根據(jù)乙地20天PM2.5日平均濃度的頻數(shù)分布表作出相應(yīng)的頻率分布直方圖,并通過(guò)兩個(gè)頻率分布直方圖比較兩地PM2.5日平均濃度的平均值及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)
(2)求甲地20天PM2.5日平均濃度的中位數(shù);
(3)通過(guò)調(diào)查,該市市民對(duì)空氣質(zhì)量的滿(mǎn)意度從高到低分為三個(gè)等級(jí):
記事件:“甲地市民對(duì)空氣質(zhì)量的滿(mǎn)意度等級(jí)為不滿(mǎn)意”。根據(jù)所給數(shù)據(jù),利用樣本估計(jì)總體的統(tǒng)計(jì)思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求事件的概率.
【答案】(1)答案見(jiàn)解析;(2)微克/立方米;(3)0.9.
【解析】分析:(1)做出乙地20天PM2.5日平均濃度的頻率分布直方圖;由圖判斷平均值和數(shù)據(jù)分散程度。
(2)根據(jù)頻率分布直方圖中位數(shù)求法,求得頻率為0.5時(shí)對(duì)應(yīng)的PM2.5值即可。
(3)先求出甲地市民對(duì)空氣質(zhì)量的滿(mǎn)意度等級(jí)為不滿(mǎn)意的概率,再利用對(duì)立事件的概率求事件的概率。
詳解:(1)乙地20天PM2.5日平均濃度的頻率分布直方圖如圖所示:
由此可知,甲地PM2.5日平均濃度的平均值低于乙地PM2.5日平均濃度的平均值;而且甲地的數(shù)據(jù)比較集中,乙地的數(shù)據(jù)比較分散.
(2)∵甲地PM2.5日平均濃度在之間的頻率為
在之間的頻率為;
∴,
∴中位數(shù)一定在區(qū)間之間,設(shè)為,則,
解得
∴甲地PM2.5日平均濃度的中位數(shù)為微克/立方米.
(3)因?yàn)楫?dāng)PM2.5日平均濃度超過(guò)60微克/立方米時(shí),市民對(duì)空氣質(zhì)量不滿(mǎn)意,
所以
又由對(duì)立事件計(jì)算公式,得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)到點(diǎn), 及到直線(xiàn)的距離都相等,如果這樣的點(diǎn)恰好只有一個(gè),那么實(shí)數(shù)的值是( )
A. B. C. 或 D. 或
【答案】D
【解析】試題分析:由題意知在拋物線(xiàn)上,設(shè),則有,化簡(jiǎn)得,當(dāng)時(shí),符合題意;當(dāng)時(shí),,有,,則,所以選D.
考點(diǎn):1、點(diǎn)到直線(xiàn)的距離公式;2、拋物線(xiàn)的性質(zhì).
【方法點(diǎn)睛】本題考查拋物線(xiàn)的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點(diǎn)和直線(xiàn)的距離相等,則的軌跡是拋物線(xiàn),再由直線(xiàn)與拋物線(xiàn)的位置關(guān)系可求;拋物線(xiàn)的定義是解決物線(xiàn)問(wèn)題的基礎(chǔ),它能將兩種距離(拋物線(xiàn)上的點(diǎn)到到焦點(diǎn)的距離、拋物線(xiàn)上的點(diǎn)到準(zhǔn)線(xiàn)的距離)進(jìn)行等量轉(zhuǎn)化,如果問(wèn)題中涉及拋物線(xiàn)的焦點(diǎn)和準(zhǔn)線(xiàn),又能與距離聯(lián)系起來(lái),那么用拋物線(xiàn)的定義就能解決.
【題型】單選題
【結(jié)束】
13
【題目】在極坐標(biāo)系中,已知兩點(diǎn), ,則, 兩點(diǎn)間的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的最小正周期;
(2)常數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;
(3)若函數(shù)在的最大值為2,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線(xiàn)性回歸方程
(3)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(2)中所得的線(xiàn)性回歸方程是否可靠?
(附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有1個(gè)紅球和2個(gè)白球,這3個(gè)球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意抽取出1個(gè)球,則:
(1)第一次取出白球,第二次取出紅球的概率;
(2)取出的2個(gè)球是1紅1白的概率;
(3)取出的2個(gè)球中至少有1個(gè)白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中正確的是( ).
①若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面互相平行;
②若一條直線(xiàn)和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線(xiàn)也和另一個(gè)平面垂直;
③若一條直線(xiàn)和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線(xiàn)一定平行于另一個(gè)平面;
④若兩個(gè)平面垂直,那么,一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直.
A. ②和④ B. ②和③ C. ③和④ D. ①和②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱的底面是菱形, , , .
(Ⅰ)證明:平面平面;
(Ⅱ)若,直線(xiàn)上是否存在點(diǎn),使得與平面所成角的正弦值為.若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),某市實(shí)驗(yàn)中學(xué)校領(lǐng)導(dǎo)審時(shí)度勢(shì),深化教育教學(xué)改革,經(jīng)過(guò)師生共同努力,高考成績(jī)碩果累累,捷報(bào)頻傳,尤其是2017年某著名高校在全國(guó)范圍內(nèi)錄取的大學(xué)生中就有25名來(lái)自該中學(xué).下表為該中學(xué)近5年被錄取到該著名高校的學(xué)生人數(shù).(記2013年的年份序號(hào)為1,2014年的年份序號(hào)為2,依此類(lèi)推……)
年份序號(hào) | 1 | 2 | 3 | 4 | 5 |
錄取人數(shù) | 10 | 13 | 17 | 20 | 25 |
(1)求關(guān)于的線(xiàn)性回歸方程,并估計(jì)2018年該中學(xué)被該著名高校錄取的學(xué)生人數(shù)(精確到整數(shù));
(2)若在第1年和第4年錄取的大學(xué)生中按分層抽樣法抽取6人,再?gòu)倪@6人中任選2人,求這2人中恰好有一位來(lái)自第1年的概率.
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com