【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值點;
(2)若,恒成立,求的取值范圍.
【答案】(1)當時,無極值點;當時,極值點為;當且時,極值點為和;(2).
【解析】
(1)先求出函數(shù)的導數(shù),討論、、且即可求出函數(shù)的極值點;
(2)由題意可將,恒成立轉(zhuǎn)化為時,恒成立,然后構(gòu)造函數(shù),分,與兩種情況討論,分別用導數(shù)的方法研究其在上的單調(diào)性和值域,即可篩選出符合題意的的取值范圍.
(1),
當時,,故無極值點;
當時,函數(shù)只有一個極值點,極值點為;
當且時,函數(shù)有兩個極值點,分別為和.
(2),依題意,當時,,
即當時,.
設(shè),則.
設(shè),則.
①當時,,,從而(當且僅當時,等號成立),
在上單調(diào)遞增.
又,當時,,從而當時,,
在上單調(diào)遞減,又,
從而當時,,即,
于是當時,.
②當時,令,得,.
故當時,,
在上單調(diào)遞減.
又,當時,,從而當時,,
在上單調(diào)遞增,又,
從而當時,,即,
于是當時,,不符合題意.
綜上所述:實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都乘以同一個非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a倍
B.設(shè)有一個回歸方程,變量x增加1個單位時,y平均減少5個單位
C.線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱
D.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),則P(ξ>1)=0.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構(gòu)成的四邊形恰為正方形,則橢圓的離心率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟發(fā)展迅速,工業(yè)增加值連年攀升,某研究機構(gòu)統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點圖和表中數(shù)據(jù),此研究機構(gòu)對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進行了擬合實驗,研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)預測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本 的相關(guān)系數(shù),
,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,分別為的左、右頂點,是上異于的動點,面積的最大值為2.
(1)求橢圓的方程;
(2)證明:直線與直線的斜率乘積為定值;
(3)設(shè)直線,分別交直線于兩點,以為直徑作圓,當圓的面積最小時,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班級的全體學生平均分成個小組,且每個小組均有名男生和多名女生.現(xiàn)從各個小組中隨機抽取一名同學參加社區(qū)服務活動,若抽取的名學生中至少有一名男生的概率為,則( )
A.該班級共有名學生
B.第一小組的男生甲被抽去參加社區(qū)服務的概率為
C.抽取的名學生中男女生數(shù)量相同的概率是
D.設(shè)抽取的名學生中女生數(shù)量為,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標系方程和直線的普通方程;
(2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com