證明:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)
考點(diǎn):集合中元素個(gè)數(shù)的最值
專題:證明題,集合
分析:計(jì)數(shù)容斥原理,“容”就是加進(jìn)來,“斥”就是把多加了的減出去,即可證明結(jié)論.
解答: 證明:card(A∪B∪C)=card[(A∪B)∪C]=card(A∪B)+card(C)-card[(A∪B)∩C],
而card(A∪B)=card(A)+card(B)-card(A∩B),
card[(A∪B)∩C]=card[(A∩C)∪(B∩C)]=card(A∩C)+card(B∩C)-card[(A∩C)∩(B∩C)],
card[(A∩C)∩(B∩C)]=card(A∩B∩C),
所以card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C).
點(diǎn)評(píng):本題考查計(jì)數(shù)容斥原理,“容”就是加進(jìn)來,“斥”就是把多加了的減出去,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a,b>0)拋物線y2=4x共焦點(diǎn),雙曲線與拋物線的一公共點(diǎn)到拋物線準(zhǔn)線的距離為2,雙曲線的離心率為e,則2e-b2的值是( 。
A、
2
+1
B、2
2
-2
C、4-2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三角形ABC的頂點(diǎn)A(
3
,1),B(3
3
,1),頂點(diǎn)C在第一象限,若點(diǎn)M(x,y)在△ABC的內(nèi)部或邊界,則z=
OA
OM
取最大值時(shí),3x2+y2有( 。
A、定值52B、定值82
C、最小值52D、最小值50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標(biāo)平面內(nèi)的兩不同點(diǎn)P、Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)[P,Q]是函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì)[P,Q]與[Q,P]看作同一對(duì)“友好點(diǎn)對(duì)”).已知函數(shù)f(x)=
1
2
x
,x>0
-x2-4x,x≤0
,則此函數(shù)的“友好點(diǎn)對(duì)”有( 。⿲(duì).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,直線l過F2交橢圓于B,C兩點(diǎn).
(1)如果直線l的方程為y=x-1,且△F1BC為直角三角形,求橢圓方程;
(2)證明:以A為圓心,半徑為b的圓上任意一點(diǎn)到F1,F(xiàn)2的距離之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:實(shí)數(shù)x滿足(x-3a)(x-a)<0,其中a>0,q:實(shí)數(shù)x滿足
x2-3x≤0
x2-x-2>0

(1)當(dāng)a=1,p且q為真時(shí),求實(shí)數(shù)x的取值范圍;
(2)若?p是?q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx+cosx=
5
13
2
,且x∈(
π
4
4
).
(1)求cosx;
(2)求
1-tanx
1+tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:AB是⊙O的直徑,C是弧BD的中點(diǎn),CE⊥AB,垂足為E,BD交CE于點(diǎn)F.
(Ⅰ)求證:CF=BF;
(Ⅱ)若AD=4,⊙O的半徑為6,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=6cos2x-2
3
sinxcosx.
(1)求f(x)的最小正周期和值域;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(B)=0且b=2,cosA=
4
5
,求a和sinC.

查看答案和解析>>

同步練習(xí)冊(cè)答案