【題目】某海產(chǎn)品經(jīng)銷(xiāo)商調(diào)查發(fā)現(xiàn),該海產(chǎn)品每售出噸可獲利萬(wàn)元,每積壓噸則虧損萬(wàn)元.根據(jù)往年的數(shù)據(jù),得到年需求量的頻率分布直方圖如圖所示,將頻率視為概率.
(1)請(qǐng)補(bǔ)齊上的頻率分布直方圖,并依據(jù)該圖估計(jì)年需求量的平均數(shù);
(2)今年該經(jīng)銷(xiāo)商欲進(jìn)貨噸,以(單位:噸, )表示今年的年需求量,以(單位:萬(wàn)元)表示今年銷(xiāo)售的利潤(rùn),試將表示為的函數(shù)解析式;并求今年的年利潤(rùn)不少于萬(wàn)元的概率.
【答案】(1);(2)今年獲利不少于萬(wàn)元的概率為.
【解析】試題分析:(1)根據(jù)各小矩形面積和為 ,可確定所缺矩形的縱坐標(biāo),從而可補(bǔ)全直方圖,每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和,即可估計(jì)年需求量的平均數(shù);(2)根據(jù)銷(xiāo)售收入減成本可將表示為的函數(shù)解析式,由解析式可求出今年獲利不少于萬(wàn)元的的范圍是,結(jié)合直方圖可得.
試題解析:(1)
解:設(shè)年需求量平均數(shù)為,
則,
(2)設(shè)今年的年需求量為噸、年獲利為萬(wàn)元,
當(dāng)時(shí), ,
當(dāng)時(shí), ,
故,
,
則,
,
,
,
,
.
所以今年獲利不少于萬(wàn)元的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是的極值點(diǎn),試研究函數(shù)的單調(diào)性,并求的極值;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線(xiàn)為參數(shù))與曲線(xiàn)相交于兩點(diǎn),求;
(2)若是曲線(xiàn)上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).該地一建設(shè)銀行統(tǒng)計(jì)連續(xù)五年的儲(chǔ)蓄存款(年底余額)得到下表:
年份 | |||||
儲(chǔ)蓄存款 (千億元) |
為便于計(jì)算,工作人員將上表的數(shù)據(jù)進(jìn)行了處理(令, ),得到下表:
時(shí)間 | |||||
儲(chǔ)蓄存款 |
(Ⅰ)求關(guān)于的線(xiàn)性回歸方程;
(Ⅱ)通過(guò)(Ⅰ)中的方程,求出關(guān)于的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測(cè)到年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
附:線(xiàn)性回歸方程,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方體,直線(xiàn)與平面所成角為垂直于點(diǎn)為的中點(diǎn).
(1)求直線(xiàn)與平面所成角的正弦值;
(2)線(xiàn)段上是否存在點(diǎn),使得二面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn): ()的焦點(diǎn)是橢圓: ()的右焦點(diǎn),且兩曲線(xiàn)有公共點(diǎn)
(1)求橢圓的方程;
(2)橢圓的左、右頂點(diǎn)分別為, ,若過(guò)點(diǎn)且斜率不為零的直線(xiàn)與橢圓交于, 兩點(diǎn),已知直線(xiàn)與相較于點(diǎn),試判斷點(diǎn)是否在一定直線(xiàn)上?若在,請(qǐng)求出定直線(xiàn)的方程;若不在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程是(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)寫(xiě)出曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中,各踢了場(chǎng), 各踢了場(chǎng), 踢了場(chǎng),且隊(duì)與隊(duì)未踢過(guò), 隊(duì)與隊(duì)也未踢過(guò),則在第一周的比賽中, 隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,且點(diǎn)到橢圓上任意一點(diǎn)的最大距離為3,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為的直線(xiàn)與以線(xiàn)段為直徑的圓相交于、兩點(diǎn),與橢圓相交于、,且?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com