【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;
(2)若是曲線上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
【答案】(1)(2)
【解析】試題分析:(1)利用極坐標(biāo)與平面直角坐標(biāo)系的轉(zhuǎn)化,可得的方程,再進(jìn)一步將的參數(shù)方程轉(zhuǎn)化,將直線參數(shù)方程與圓方程聯(lián)立,利用直線方程參數(shù)的幾何意義,再結(jié)合韋達(dá)定理可得的值; (2)在曲線上,利用圓的參數(shù)方程,將轉(zhuǎn)化成一個(gè)三角函數(shù)式,利用三角函數(shù)內(nèi)容可求最大值.
試題解析:(1)化為直角坐標(biāo)方程為,
為參數(shù))可化為為參數(shù)),
代入,得的,化簡(jiǎn)得,
設(shè)對(duì)應(yīng)的參數(shù)為,則,所以.
(2)在曲線上,設(shè)為參數(shù))
則,
令,則,
那么,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩個(gè)班級(jí)某次考試的數(shù)學(xué)成績(jī)(單位:分),從甲、乙兩個(gè)班級(jí)中分別隨機(jī)抽取5名學(xué)生的成績(jī)作樣本,如圖是樣本的莖葉圖,規(guī)定:成績(jī)不低于120分時(shí)為優(yōu)秀成績(jī).
(1)從甲班的樣本中有放回的隨機(jī)抽取2個(gè)數(shù)據(jù),求其中只有一個(gè)優(yōu)秀成績(jī)的概率;
(2)從甲、乙兩個(gè)班級(jí)的樣本中分別抽取2名學(xué)生的成績(jī),記獲優(yōu)秀成績(jī)的總?cè)藬?shù)為X,求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,(且),數(shù)列滿足:,且(且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對(duì)任意實(shí)數(shù)a恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測(cè)一個(gè)橋墩的工程費(fèi)用為256萬元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+ )x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬元.假設(shè)需要新建n個(gè)橋墩.
(1)寫出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)所在直線的極坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com