【題目】在棱長均相等的正三棱柱中,的中點(diǎn),上,且,則下述結(jié)論:①;②;③平面平面:④異面直線所成角為其中正確命題的個(gè)數(shù)為( )

A.1B.2C.3D.4

【答案】B

【解析】

設(shè)出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷的中點(diǎn)推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標(biāo)系求出異面直線所成角判斷④的正誤.

解:不妨設(shè)棱長為:2,對于①連結(jié),則,不垂直,又,①不正確;

對于②,連結(jié),,在中,,而,的中點(diǎn),所以,②正確;

對于③由②可知,在中,,連結(jié),易知,而在中,,

,又,平面平面③正確;

為坐標(biāo)原點(diǎn),平面上過點(diǎn)垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標(biāo)系;

,, ,

,

異面直線所成角為,,故.④不正確.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下面類比推理:

①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.

其中結(jié)論正確的個(gè)數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上.

1)若拋物線C經(jīng)過點(diǎn),求C的標(biāo)準(zhǔn)方程;

2)拋物線C的焦點(diǎn)m是大于零的常數(shù)),若過點(diǎn)F的直線與C交于 兩點(diǎn),,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于x的一元二次方程.

1)若a是從0、12、3四個(gè)數(shù)中任取的一個(gè)數(shù),是從0、1、2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程沒有實(shí)根的概率.

2)若a是從區(qū)間內(nèi)任取的一個(gè)數(shù),,求上述方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十四屆全國冬季運(yùn)動會召開期間,某校舉行了冰上運(yùn)動知識競賽,為了解本次競賽成績情況,從中隨機(jī)抽取部分學(xué)生的成績(得分均為整數(shù),滿分100)進(jìn)行統(tǒng)計(jì),請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:

1)求、的值及隨機(jī)抽取一考生其成績不低于70分的概率;

2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加普及冰雪知識志愿活動,并指定2名負(fù)責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的概率.

組號

分組

頻數(shù)

頻率

1

15

0.15

2

35

0.35

3

b

0.20

4

20

5

10

0.1

合計(jì)

1.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,命題:對,不等式恒成立;命題,使得成立.

(1)若為真命題,求的取值范圍;

(2)當(dāng)時(shí),若假,為真,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)為坐標(biāo)原點(diǎn),一條直線與圓相切并與橢圓交于不同的兩點(diǎn).

1)設(shè),求的表達(dá)式;

2)若,求直線的方程;

3)若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))

1)若R上單調(diào)遞增,求正數(shù)a的取值范圍;

2)若fx)在處導(dǎo)數(shù)相等,證明:;

3)當(dāng)時(shí),證明:對于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).

查看答案和解析>>

同步練習(xí)冊答案