正方體ABCD-A1B1C1D1的棱長為a,點(diǎn)M在AC1上且,N為B1B的中點(diǎn),則||為( )
A.a B.a
C.a D.a
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北邢臺一中高二12月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù),其圖象在點(diǎn)處的切線與直線垂直,則直線與坐標(biāo)軸圍成的三角形的面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓C:x2+y2+2x-4y+3=0.
(1)若不過原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)從圓C外一點(diǎn)P(x,y)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C1:+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓C:+=1(a>b>0)過點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知矩形ABCD,P為平面ABCD外一點(diǎn),且PA⊥平面ABCD,M、N分別為PC、PD上的點(diǎn),且PMMC=21,N為PD的中點(diǎn).若,則x=________,y=________,z=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在棱長為a的正方體OABC-O1A1B1C1中,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF=x,其中0≤x≤a,以O為原點(diǎn)建立空間直角坐標(biāo)系O-xyz.
(1)寫出點(diǎn)E、F的坐標(biāo);
(2)求證:A1F⊥C1E;
(3)若A1、E、F、C1四點(diǎn)共面,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=2px(p>0)的焦點(diǎn)為F,F關(guān)于原點(diǎn)的對稱點(diǎn)為P,過F作x軸的垂線交拋物線于M、N兩點(diǎn),有下列四個(gè)命題:
①△PMN必為直角三角形;②△PMN不一定為直角三角形;③直線PM必與拋物線相切;④直線PM不一定與拋物線相切.其中正確的命題是( )
A.①③ B.①④
C.②③ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某年級120名學(xué)生在一次百米測試中,成績?nèi)拷橛?3s與18s之間.將測試結(jié)果分成5組:[13,14),[14,15),[15,16),[16,17),[17,18],得到如圖所示的頻率分布直方圖.如果從左到右的5個(gè)小矩形的面積之比為13763,那么成績在[16,18]的學(xué)生人數(shù)是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com