π
(x+sinx)dx=
 
考點(diǎn):定積分
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出原函數(shù),即可求得定積分.
解答: 解:
π
(x+sinx)dx=(
1
2
x2
-cosx)
|
π
=
1
2
π2
-cosπ-[
1
2
π2
-cos(-π)]=0
故答案為:0.
點(diǎn)評(píng):本題考查定積分,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)上點(diǎn)P(1,f(1))處的切線方程為3x-y+1=0.
(1)若y=f(x)在x=-2時(shí)有極值,求y=f(x)的表達(dá)式;
(2)在(1)的條件下求y=f(x)在[-3,2]上的最值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x|x-a|,其中x∈R,
(1)判斷函數(shù)f(x)的奇偶性;    
(2)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a0+
1
2
a1+
1
3
a2+…+
1
n+1
an=0,其中ai(i=0,1,…n)是不全為零的常數(shù),試證明:多項(xiàng)式f(x)=a0+a1x+…+anxn在(0,1)內(nèi)至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=
2
3
,an-an-1=4n-2(n≥2),記Tn=
3an
2n-1
,如果對(duì)任意的正整數(shù)n,都有Tn≥M,則實(shí)數(shù)M的最大值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1且an-1-an=an-1an(n≥2,n∈N*),則Tn=a1a2+a2a3+…+anan-1的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由命題“Rt△ABC中,兩直角邊分別為a,b,斜邊上的高為h,則得
1
h2
=
1
a2
+
1
b2
”由此可類(lèi)比出命題“若三棱錐S-ABC的三條側(cè)棱SA,SB,SC兩兩垂直,長(zhǎng)分別為a,b,c,底面ABC上的高為h,則得
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x5+ax3+bx-8,且f(-2)=6,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=sin(2x+
π
3
)的圖象,只需將函數(shù)y=sin2x的圖象( 。
A、向左平移
π
3
個(gè)單位
B、向左平移
π
6
個(gè)單位
C、向右平移
π
3
個(gè)單位
D、向右平移
π
6
個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案