如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F.若C的右準(zhǔn)線l的方程為x=4,離心率e=.

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 設(shè)點(diǎn)P為準(zhǔn)線l上一動(dòng)點(diǎn),且在x軸上方.圓M經(jīng)過O、F、P三點(diǎn),求當(dāng)圓心M到x軸的距離最小時(shí)圓M的方程.


解:(1) 由題意,設(shè)橢圓C的標(biāo)準(zhǔn)方程為=1(a>b>0),則解得a=2,c=2.從而b2=a2-c2=4.所以所求橢圓C的標(biāo)準(zhǔn)方程為=1.

(2) (解法1)由(1)知F(2,0).由題意可設(shè)P(4,t),t>0.

線段OF的垂直平分線方程為x=1.①

因?yàn)榫段FP的中點(diǎn)為,斜率為,

所以FP的垂直平分線方程為y-=-(x-3),即y=-x+.②

聯(lián)立①②,解得.

因?yàn)閠>0,所以=2,當(dāng)且僅當(dāng),即t=2時(shí),圓心M到x軸的距離最小,此時(shí)圓心為M(1,2),半徑為OM=3.故所求圓M的方程為(x-1)2+(y-2)2=9.

(解法2)由(1)知F(2,0).由題意可設(shè)P(4,t),t>0.因?yàn)閳AM過原點(diǎn)O,故可設(shè)圓M的方程為x2+y2+Dx+Ey=0.將點(diǎn)F、P的坐標(biāo)代入得解得

所以圓心M的坐標(biāo)為,即(1,).因?yàn)閠>0,所以≥2=2,當(dāng)且僅當(dāng),即t=2時(shí),圓心M到x軸的距離最小,此時(shí)E=-4.故所求圓M的方程為x2+y2-2x-4y=0.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知集合A=,則實(shí)數(shù)的取值范圍是            

   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知點(diǎn)P1(2,3)、P2(-4,5)和A(-1,2),求過點(diǎn)A且與點(diǎn)P1、P2距離相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


以點(diǎn)(2,-2)為圓心并且與圓x2+y2+2x-4y+1=0相外切的圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


直線l過點(diǎn)(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點(diǎn),如果AB=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).

(1) 求證:△AOB的面積為定值;

(2) 設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;

(3) 在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若函數(shù)在(0,1)內(nèi)有極小值,則實(shí)數(shù)b的取值范圍是

A.(0,1)   B.(0,)    C.(0,+∞)    D.(∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,如果a、b、c成等差數(shù)列,∠B=30°,△ABC的面積為,那么b=

A.             B.              C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


下列有關(guān)命題的說法正確的是 (  )

    A.“”是“”的充分不必要條件

B.“”是“”的必要不充分條件.

C.命題“使得”的否定是:“ 均有”.

D.命題“若,則”的逆否命題為真命題.

查看答案和解析>>

同步練習(xí)冊答案