某公司以每噸10萬(wàn)元的價(jià)格銷(xiāo)售某種產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價(jià)格上漲x%,則每年的銷(xiāo)售數(shù)量將減少
1
2
x%,該產(chǎn)品每噸的價(jià)格上漲百分之幾,可使銷(xiāo)售的總金額最大?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專(zhuān)題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)該產(chǎn)品每噸的價(jià)格上漲x%,則每年的銷(xiāo)售數(shù)量將減少
1
2
x%,可建立函數(shù)關(guān)系式;利用配方法可求函數(shù)的最大值.
解答: 解:由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷(xiāo)售總金額為y,則:y=10×1000×(1+x%)×(1-
1
2
x%)(萬(wàn)元)
即y=
1
2
[-(x-50)2+22500]
當(dāng)x=50時(shí),ymax=11250萬(wàn)元,
即該產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷(xiāo)售總金額最大.
點(diǎn)評(píng):本題考查函數(shù)模型的構(gòu)建,考查配方法求函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域
(1)y=
x2-2x-8
;   
(2)y=
x2+2x+3
x
,x∈[
1
2
,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD,E、F、G分別是PC、PD、BC的中點(diǎn),現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖乙),且所得到的四棱錐P-ABCD的正視圖、側(cè)視圖、俯視圖的面積總和為8.
(1)求點(diǎn)C到平面EFG的距離;
(2)求二面角G-EF-D夾角的余弦值;
(3)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩兩相互獨(dú)立的三個(gè)事件A,B,C滿足條件ABC=∅,P(A)=P(B)=P(C)<
1
2
,且已知P(A∪B∪C)=
9
16
,求P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:MN⊥CD;
(3)若∠PDA=45°,求證:MN⊥面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是定義在(-∞,+∞)上的奇函數(shù),且當(dāng)x>0,f(x)=2x(1-x),求:
(1)f(-2)的值;
(2)當(dāng)x<0時(shí),函數(shù)的解析式;
(3)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知∅?M?{0,1,2},寫(xiě)出滿足條件的所有集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,不等式x+
1
x+1
≥a恒成立,則實(shí)數(shù)a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x>1,y>1且lgx+lgy=4,則lgx•lgy最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案