【題目】如圖為一簡單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點(diǎn),求證:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

【答案】
(1)證明:∵PD⊥平面ABCD,CE⊥平面ABCD,∴EC∥PD,

又PD平面PDA,EC平面PDA,

∴EC∥平面PDA,

∵四邊形ABCD為正方形,

∴BC∥AD,又AD平面PDA,BC平面PDA,

∴BC∥平面PDA,

∵EC平面EBC,BC平面EBC,EC∩BC=C,

∴平面EBC∥平面PDA.


(2)證明:設(shè)AC與BD相交于點(diǎn)O,連接NO,

∵四邊形ABCD為正方形,∴O為BD的中點(diǎn),又N為PB的中點(diǎn),

∴NO∥PD且NO= PD,

又由(1)得EC∥PD,且 ,

∴NO∥EC且NO=EC,∴四邊形NOCE為平行四邊形,

∴NE∥OC,即NE∥A,C

∵PD⊥平面ABCD,AC平面ABCD,∴AC⊥PD,

又DB⊥AC,PD∩BD=D

∴AC⊥平面PBD,又NE∥AC,

∴NE⊥平面PDB.


【解析】(1)由線面垂直性質(zhì)得EC∥PD,由四邊形ABCD為正方形,得BC∥AD,由此能證明平面EBC∥平面PDA.(2)推導(dǎo)出四邊形NOCE為平行四邊形,從而AC⊥PD,再由DB⊥AC,能證明NE⊥平面PDB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報道提供的全網(wǎng)傳播2015年某全國性大型活動的省級衛(wèi)視新聞臺融合指數(shù)的數(shù)據(jù),對名列前20名的省級衛(wèi)視新聞臺的融合指數(shù)進(jìn)行分組統(tǒng)計,結(jié)果如表所示.

組號

分組

頻數(shù)

1


2

2


8

3


7

4


3

)現(xiàn)從融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在的概率;

)根據(jù)分組統(tǒng)計表求這20省級衛(wèi)視新聞臺的融合指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4—5:不等式選講

設(shè)函數(shù)f(x)=|2x﹣7|+1.

(Ⅰ)求不等式f(x)≤x的解集;

(Ⅱ)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且過點(diǎn), 是橢圓上異于長軸端點(diǎn)的兩點(diǎn).

(1)求橢圓的方程;

(2)已知直線 ,且,垂足為 ,垂足為,若,且的面積是面積的5倍,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為(x﹣1)2+(y﹣1)2=1,P點(diǎn)坐標(biāo)為(2,3), 求:
(1)過P點(diǎn)的圓的切線長.
(2)過P點(diǎn)的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書法社團(tuán)有男生30名,婦生20名,從中抽取一個5人的樣本,恰好抽到了2名男生和3名女生。①該抽樣一定不是系統(tǒng)抽樣,②該抽樣可能是隨機(jī)抽樣,③該抽樣不可能是分層抽樣,④男生被抽到的概率大于女生被抽到的概率,其中正確的是_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)若定點(diǎn)P(1,1)分弦AB為 = ,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是二次函數(shù),其圖象過點(diǎn)(0,1),且在點(diǎn)(-2,f(-2))處的切線方程為2x+y+3=0
(1)求f(x)的表達(dá)式;
(2)求f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(3)若直線x=-t(0<t<1)把f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的兩條高線所在直線的方程為2x﹣3y+1=0和x+y=0,頂點(diǎn)A(1,2),求:
(1)BC邊所在直線的方程;
(2)△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案