【題目】已知定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根,稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)求表達(dá)式;
(3)把函數(shù),的最大值記作、最小值記作,令,若恒成立,求的取值范圍.
【答案】(1)當(dāng)時(shí),函數(shù)為奇函數(shù):當(dāng)時(shí),函數(shù)為非奇非偶函數(shù)(2)(3)
【解析】
(1)分和討論即可;
(2)將表達(dá)式通分,再利用韋達(dá)定理代入即可;
(3)先求出在上的最值,再分析函數(shù)的單調(diào)性,求出,然后分離參數(shù),求出參數(shù)的范圍.
(1)當(dāng)時(shí),,
所以,即為奇函數(shù);
當(dāng)時(shí),因,,
所以,,
所以不是奇函數(shù)也不是偶函數(shù).
(2)由題意,方程的兩個(gè)實(shí)根、,
即方程的兩個(gè)實(shí)根為、,,
∴,,,
∴
(3)由,則,
由(2)知方程的兩個(gè)實(shí)根為、,
則當(dāng)時(shí),恒成立,所以,恒成立
∴函數(shù)在上是單調(diào)遞增,
∴,
由恒成立,即恒成立,
∴恒成立,又,,則,
∴,
故的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.
()如果函數(shù)在上單調(diào)遞減,求的取值范圍.
()當(dāng)時(shí),討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)團(tuán)委組織了“紀(jì)念抗日戰(zhàn)爭勝利73周年”的知識(shí)競賽,從參加競賽的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段,,…,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形CDEF是正方形,四邊形ABCD為直角梯形,∠ADC=90°,AB∥DC,平面CDEF⊥平面ABCD,AB=ADCD=a,M在FB上,且BD∥平面ECM.
(1)求證:M為BF中點(diǎn);
(2)求證:平面BCF⊥平面EMC;
(3)求直線CD與平面ECM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資160萬元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資30萬元,由前期市場調(diào)研可知:甲城市收益P與投入單位:萬元滿足,乙城市收益Q與投入單位:萬元滿足,設(shè)甲城市的投入為單位:萬元,兩個(gè)城市的總收益為單位:萬元.
(1)寫出兩個(gè)城市的總收益萬元關(guān)于甲城市的投入萬元的函數(shù)解析式,并求出當(dāng)甲城市投資72萬元時(shí)公司的總收益;
(2)試問如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識(shí)競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績之差的絕對(duì)值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行了一次初一學(xué)生調(diào)研考試,為了解本次考試學(xué)生的數(shù)學(xué)學(xué)科成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為100分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量)進(jìn)行統(tǒng)計(jì),按照的分組方法作出頻率分布直方圖,并作出了樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù)].
(Ⅰ)求頻率分布直方圖中的的值,并估計(jì)學(xué)生分?jǐn)?shù)的中位數(shù);
(Ⅱ)字在選取的樣本中,從成績?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中,a1=2,a3+2是a2和a4的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)記=log2,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下對(duì)各事件發(fā)生的概率判斷正確的是( )
A.甲、乙兩人玩剪刀、石頭、布的游戲,則玩一局甲不輸?shù)母怕适?/span>
B.從1名男同學(xué)和2名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中一男一女同學(xué)的概率為
C.將一個(gè)質(zhì)地均勻的正方體骰子(每個(gè)面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的概率是
D.從三件正品、一件次品中隨機(jī)取出兩件,則取出的產(chǎn)品全是正品的概率是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com