(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
(1)(2)(3)
解析試題分析:(1)當(dāng)時,,則,故………2分
又切點為,故所求切線方程為,即……………………4分
(2)由題意知,在區(qū)間(1,2)上有不重復(fù)的零點,
由,得,因為,所以……7分
令,則,故在區(qū)間(1,2)上是增函數(shù),
所以其值域為,從而的取值范圍是……………………………9分
(3),
由題意知對恒成立,即對恒成立,即 ①對恒成立 ……………………………11分
當(dāng)時,①式顯然成立;
當(dāng)時,①式可化為 ②,
令,則其圖象是開口向下的拋物線,所以 ……………13分
即,其等價于 ③ ,
因為③在時有解,所以,解得,
從而的最大值為……………………………16分
考點:導(dǎo)數(shù)的幾何意義及函數(shù)零點,不等式與函數(shù)的轉(zhuǎn)化
點評:不等式恒成立問題常轉(zhuǎn)化為函數(shù)最值問題,不等式問題常轉(zhuǎn)化為函數(shù)問題求解
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè),點P(,0)是函數(shù)的圖象的一個公共點,兩函數(shù)的圖象在點P處有相同的切線.
(1)用表示a,b,c;
(2)若函數(shù)在(-1,3)上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),,,其中且.
(I)求函數(shù)的導(dǎo)函數(shù)的最小值;
(II)當(dāng)時,求函數(shù)的單調(diào)區(qū)間及極值;
(III)若對任意的,函數(shù)滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù).
(1)當(dāng)時,求證:函數(shù)在上單調(diào)遞增;
(2)若函數(shù)有三個零點,求的值;
(3)若存在,使得,試求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù),.
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上不存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分) 已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,判斷方程實根個數(shù).
(3)若時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)若是的極值點,求在上的最大值
(2)若函數(shù)是R上的單調(diào)遞增函數(shù),求實數(shù)的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)是定義在上的奇函數(shù),函數(shù)與的圖象關(guān)于軸對稱,且當(dāng)時,.
(I)求函數(shù)的解析式;
(II)若對于區(qū)間上任意的,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com