(本題滿分15分)

已知實(shí)數(shù)滿足,設(shè)函數(shù)

(Ⅰ) 當(dāng)時,求f (x)的極小值;

(Ⅱ) 若函數(shù) ()的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.

求證:g(x)的極大值小于等于

 

【答案】

  (Ⅰ) 解: 當(dāng)a=2時,f ′(x)=x2-3x+2=(x-1)(x-2).

        列表如下:

 

x

(-,1)

1

(1,2)

2

(2,+)

f ′(x)

0

0

f (x)

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

 

所以,f (x)極小值為f (2)=.           …………………………………5分

 

(Ⅱ) 解:f ′(x)=x2-(a+1)xa=(x-1)(xa).

g ′(x)=3x2+2bx-(2b+4)+

p(x)=3x2+(2b+3)x-1,

  (1) 當(dāng) 1<a≤2時,

f (x)的極小值點(diǎn)xa,則g(x)的極小值點(diǎn)也為xa,

所以p(a)=0,

即3a2+(2b+3)a-1=0,

b,

此時g(x)極大值g(1)=1+b-(2b+4)=-3-b

=-3+ =

由于1<a≤2,

2-.………………………………10分

(2) 當(dāng)0<a<1時,

f (x)的極小值點(diǎn)x=1,則g(x)的極小值點(diǎn)為x=1,

由于p(x)=0有一正一負(fù)兩實(shí)根,不妨設(shè)x2<0<x1,

所以0<x1<1,

p(1)=3+2b+3-1>0,

b>-

此時g(x)的極大值點(diǎn)xx1

g(x1)=x13bx12-(2b+4)x1+lnx1

<1+bx12-(2b+4)x1

=(x12-2x1)b-4x1+1   (x12-2x1<0)

<-(x12-2x1)-4x1+1

=-x12x1+1

=-(x1)2+1+   (0<x1<1)

綜上所述,g(x)的極大值小于等于.     ……………………15分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機(jī)會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運(yùn)用所學(xué)的知識說明這樣的活動對商家是否有利。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(Ⅰ)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,求實(shí)數(shù)的最大值;

(Ⅱ)若對任意的,都成立,求實(shí)數(shù)的取值范圍.

注:為自然對數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知直線與曲線相切

1)求b的值;

2)若方程上恰有兩個不等的實(shí)數(shù)根,求

①m的取值范圍;

②比較的大小

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知拋物線),焦點(diǎn)為,直線交拋物線兩點(diǎn),是線段的中點(diǎn),

  過軸的垂線交拋物線于點(diǎn),

  (1)若拋物線上有一點(diǎn)到焦點(diǎn)的距離為,求此時的值;

  (2)是否存在實(shí)數(shù),使是以為直角頂點(diǎn)的直角三角形?若存在,求出的值;若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題

(本題滿分15分)

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)設(shè),若上不單調(diào)且僅在處取得最大值,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案