已知等比數(shù)列{an}的前n項和為Sn=a-2n-3(a為常數(shù)),且a1=3.
(I)求數(shù)列{an}的通項公式;
(II)設bn=n•an,求數(shù)列{bn}的前n項和Tn.
解:當n=1時,a1=S1=a•2-3=3,a=3
當n≥2時,an=S n-Sn-1=(3•2n-3)-(3•2n-1-3)=3•2n-1-,
且對n=1也符合,所以an=3•2n-1.
(II)bn=n•an=3n•2n-1. 3n•2n-1
Tn=3•20+6•21+…+3n•2n-1 ①
2Tn=3•21+6•22+…+3(n-1)•2n-1+3n•2n ②
兩式相減,得-Tn=3+3(21+22+…2 n-1)-3n•2n
=3+3(2n-2)-3n•2n=3(1-n)•2n-3,
∴Tn=3(n-1)•2n+3.
分析:(I)當n=1時,a1=S1=a•2-3=3,a=3.當n≥2時,利用an=S n-Sn-1=求解.
(II)bn=n•an=3n•2n-1利用錯位相消法求解即可.
點評:本題考查數(shù)列通項公式求解,錯位相消法數(shù)列求和,考查轉化、計算能力.