如圖,已知拋物線焦點(diǎn)為,直線經(jīng)過點(diǎn)且與拋物線相交于,兩點(diǎn)

(Ⅰ)若線段的中點(diǎn)在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

(Ⅰ);(Ⅱ) 

解析試題分析:(Ⅰ)根據(jù)已知條件設(shè)出未知的點(diǎn)的坐標(biāo)和斜率,根據(jù)兩點(diǎn)間的斜率公式和中點(diǎn)坐標(biāo)公式找等價(jià)關(guān)系,求出直線 的斜率,由已知得的根據(jù)斜截式求出直線方程; (Ⅱ)設(shè)出直線的方程為,這樣避免討論斜率的存在問題,與拋物線的方程聯(lián)立方程組,得到根與系數(shù)的關(guān)系,根據(jù)直線與拋物線相交的交點(diǎn)弦的長來求參數(shù)的值
試題解析:解:(Ⅰ)由已知得交點(diǎn)坐標(biāo)為,                   2分
設(shè)直線的斜率為,,中點(diǎn) 
,,
所以,又,所以              4分
故直線的方程是:             6分
(Ⅱ)設(shè)直線的方程為,                7分
與拋物線方程聯(lián)立得
消元得,              9分
所以有, 
                  11分
所以有,解得,                  13分
所以直線的方程是:,即                     15分
考點(diǎn):1、直線的方程;2、直線與圓錐曲線的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動點(diǎn)
(I)求直線交點(diǎn)的軌跡的方程;
(II)已知,設(shè)直線:與(I)中的軌跡交于、兩點(diǎn),直線、 的傾斜角分別為,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,且.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且斜率不為0的直線交橢圓兩點(diǎn).試問軸上是否存在異于的定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某跳水運(yùn)動員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)m()時(shí)達(dá)到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.

(1)當(dāng)=1時(shí),求跳水曲線所在的拋物線方程;
(2)若跳水運(yùn)動員在區(qū)域內(nèi)入水時(shí)才能達(dá)到壓水花的訓(xùn)練要求,求達(dá)到壓水花的訓(xùn)練要求時(shí)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn) 關(guān)于點(diǎn)對稱.

(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)若橢圓上存在點(diǎn),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),為動點(diǎn),且直線與直線的斜率之積為.
(1)求動點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與曲線相交于不同的兩點(diǎn).若點(diǎn)軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為4,且過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點(diǎn),若,點(diǎn)為線段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓的左,右焦點(diǎn),為橢圓上的動點(diǎn),且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn)。試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案