已知函數(shù)f(x)=2x
(1)試求函數(shù)F(x)=f(x)+af(2x),x∈(-∞,0]的最大值;
(2)若存在x∈(-∞,0),使|af(x)-f(2x)|>1成立,試求a的取值范圍;
(3)當(dāng)a>0,且x∈[0,15]時(shí),不等式f(x+1)≤f[(2x+a)2]恒成立,求a的取值范圍.
分析:(1)把f(x)代入到F(x)中化簡(jiǎn)得到F(x)的解析式求出F(x)的最大值即可;
(2)可設(shè)2x=t,存在t∈(0,1)使得|t2-at|>1,討論求出解集,讓a大于其最小,小于其最大即可得到a的取值范圍;
(3)不等式f(x+1)≤f[(2x+a)2]恒成立即為
x+1
≤2x+a
恒成立即要a≥(-2x+
x+1
)
max
,根據(jù)二次函數(shù)求最值的方法求出最值即可列出關(guān)于a的不等式,求出解集即可.
解答:解:(1)F(x)max=
1+a,a>-
1
2
1
4a
,a≤-
1
2

(2)令2x=t,則存在t∈(0,1)使得|t2-at|>1
所以存在t∈(0,1)使得t2-at>1或t2-at<-1
即存在t∈(0,1)使得a<(t-
1
t
)max或a>(t+
1
t
)min

∴a<0或a≥2;
(3)由f(x+1)≤f[(2x+a)2]得x+1≤(2x+a)2恒成立
因?yàn)閍>0,且x∈[0,15],所以問(wèn)題即為
x+1
≤2x+a
恒成立
a≥(-2x+
x+1
)max

設(shè)m(x)=-2x+
x+1
x+1
=t,則x=t2-1,t∈[1,4]

m(t)=-2(t2-1)+t=-2(t-
1
4
)2+
17
8

所以,當(dāng)t=1時(shí),m(x)max=1∴a≥1
點(diǎn)評(píng):考查學(xué)生利用整體代換的數(shù)學(xué)思想解決數(shù)學(xué)問(wèn)題的能力,以及不等式恒成立的證明方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無(wú)窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案