【題目】已定義,已知函數(shù)的定義域都是,則下列四個命題中為真命題的是_________.(寫出所有真命題的序號)

都是奇函數(shù),則函數(shù)為奇函數(shù).

都是偶函數(shù),則函數(shù)為偶函數(shù).

都是增函數(shù),則函數(shù)為增函數(shù).

都是減函數(shù),則函數(shù)為減函數(shù).

【答案】②③④

【解析】

根據(jù)函數(shù),結(jié)合具有的函數(shù)的奇偶性和單調(diào)性的圖象特征,即可求解

由題意,函數(shù),

①中,若都是奇函數(shù),則函數(shù)不一定是奇函數(shù).例如:,此時不是奇函數(shù),所以不正確;

中,若都是偶函數(shù),則,所以函數(shù)為偶函數(shù),所以是正確的;

③中,若都是增函數(shù),根據(jù)函數(shù)單調(diào)性的定義,可得函數(shù)為增函數(shù),所以是正確的;

④中,若都是減函數(shù),根據(jù)函數(shù)單調(diào)性的定義,可得函數(shù)為減函數(shù),所以是正確的.

綜上可得,正確命題的序號為②③④

故答案為:②③④

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在所有棱長都相等的三棱錐中,D,EF分別是AB,BC,CA的中點,下列四個命題:

1平面PDF;(2平面

3)平面平面;(4)平面平面

其中正確命題的序號為________

A.2)(3B.1)(3C.2)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,過點且斜率為的直線交橢圓于兩點,且點為線段的中點

1)求橢圓的方程;

2)設點為坐標原點,過右焦點的直線交橢圓于兩點,(不在軸上),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為(

A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)[0,7]上有16兩個零點,且函數(shù)與函數(shù)都是偶函數(shù),則[02019]上的零點至少有( )個

A.404B.406C.808D.812

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求曲線處的切線方程;

2)若函數(shù)在區(qū)間上有極值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與軸的交點至少有一個在原點右側(cè).

1)求實數(shù)的取值范圍;

2)令,求的值(其中表示不超過的最大整數(shù),例如:,)

3)對(2)中的求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:

(I)根據(jù)散點圖判斷在推廣期內(nèi),(c,d為為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關(guān)于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由)

(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預測活動推出第8天使用掃碼支付的人次.

參考數(shù)據(jù):

4

62

1.54

2535

50.12

140

3.47

其中,

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點,以坐標原點O為極點,軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足| ,記點N的軌跡為曲線C

1)①設動點,記是直線的向上方向的單位方向向量,且,以t為參數(shù)求直線的參數(shù)方程

②求曲線C的極坐標方程并化為直角坐標方程;

2)設直線與曲線C交于P,Q兩點,求的值

查看答案和解析>>

同步練習冊答案