設(shè)等比數(shù)列{an}的前n項和Sn=2n+a,則a3=
 
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用a3=S3-S2,即可求出a3
解答: 解:∵Sn=2n+a,
∴a3=S3-S2=(23+a)-(22+a)=4,
故答案為:4.
點評:本題考查數(shù)列的求和與通項,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足2B=A+C,若b=4,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱的充要條件是f(a-x)+f(a+x)=2b(或f(x)+f(2a-x)=2b.如果函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱,則稱(a,b)為“中心點”,稱函數(shù)y=f(x)為“中心函數(shù)”.
①已知f(x)在R上的“中心點”為(a,f(a))則函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù).
②已知定義在R上的偶函數(shù)y=f(x)的“中心點”為(1,1),則方程f(x)=1為[0,10]上至少有5個根.
③已知f(x)是定義在R上的增函數(shù),點(1,0)為函數(shù)y=f(x-1)的“中心點”,若不等式f(m2-6m+21)+f(n2-8n)<0對?m,n∈R恒成立,則當(dāng)m>3時,13<m2+n2<49.
④已知函數(shù)f(x)=2x-cosx為“中心函數(shù)”,數(shù)列{an}是公差為
π
8
的等差數(shù)列.若
7
n=1
f(an)=7π,則
[f(a4)]2
a1a7
=
64
5

其中你認(rèn)為是正確的所有命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:x2+y2=4,在圓M上隨機(jī)取兩點A、B,使|AB|≤2
3
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次函數(shù)f(x)=mx+n與指數(shù)型函數(shù)g(x)=ax+b,(a>0,a≠1)的圖象交于兩點A(0,1),B(1,2),通過分析兩個函數(shù)的圖象回答;當(dāng)x∈
 
時,f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={b1,b2,b3,b4},集合B={a1,a2},則從集合A到集合B的映射有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表,對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)a,b(a>b)的比值
a
b
,稱這些比值中的最小值為這個數(shù)表的“特征值”,記為f(n).若aij表示某個n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
,則:
(1)f(3)=
 
;
(2)f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,判斷框內(nèi)為“k≥n?”,n為正整數(shù),若輸出的S=26,則判斷框內(nèi)的n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知[x]表示不超過x的最大整數(shù),例如[-1.5]=-2,[1.5]=1.設(shè)函數(shù)f(x)=[x[x]],當(dāng)x∈[0,n)(n∈N*)時,函數(shù)f(x)的值域為集合A,則A中的元素個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案