【題目】設(shè)p:實(shí)數(shù)x滿(mǎn)足x2﹣4ax+3a2<0(a>0);命題q:實(shí)數(shù)x滿(mǎn)足
(1)若a=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由x2﹣4ax+3a2<0(a>0)得(x﹣a)(x﹣3a)<0,

得a<x<3a,a>0,則p:a<x<3a,a>0.

,解得2<x≤3.

即q:2<x≤3.

若a=1,則p:1<x<3,

若p∧q為真,則p,q同時(shí)為真,

,解得2<x<3,

∴實(shí)數(shù)x的取值范圍(2,3).


(2)解:若¬p是¬q的充分不必要條件,即q是p的充分不必要條件,

,即 ,

解得1<a≤2.


【解析】1、由已知當(dāng)a=1時(shí)分別求出p和q成立的等價(jià)條件根據(jù)p∧q為真求出實(shí)數(shù)x的取值范圍。
2、利用¬p是¬q的充分不必要條件,即q是p的充分不必要條件計(jì)算出實(shí)數(shù)a的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l1:(a-1)xyb=0,l2axby-4=0,求滿(mǎn)足下列條件的a , b的值.
(1)l1l2 , 且l1過(guò)點(diǎn)(1,1);
(2)l1l2 , 且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的焦距為4 ,且橢圓C過(guò)點(diǎn)(2 ,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與y軸負(fù)半軸的交點(diǎn)為B,如果直線(xiàn)y=kx+1(k≠0)交橢圓C于不同的兩點(diǎn)E、F,且B,E,F(xiàn)構(gòu)成以EF為底邊,B為頂點(diǎn)的等腰三角形,判斷直線(xiàn)EF與圓x2+y2= 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點(diǎn)
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,利用簡(jiǎn)單隨機(jī)抽樣的方法在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100


(1)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來(lái)了解該校大學(xué)新生的飲食習(xí)慣,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左右頂點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的任意一點(diǎn).
(Ⅰ)求直線(xiàn)PA與PB的斜率之積;
(Ⅱ)過(guò)點(diǎn) 作與x軸不重合的任意直線(xiàn)交橢圓E于M,N兩點(diǎn).證明:以MN為直徑的圓恒過(guò)點(diǎn)A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)已知ABCD是復(fù)平面內(nèi)的平行四邊形,并且A,B,C三點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別是3+i,﹣2i,﹣1﹣i,求D點(diǎn)對(duì)應(yīng)的復(fù)數(shù);
(2)已知復(fù)數(shù)Z1=2, =i,并且|z|=2 ,|z﹣z1|=|z﹣z2|,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿(mǎn)足約束條件 ,且目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(4,1)處取得最大值,則原點(diǎn)O到直線(xiàn)ax﹣y+17=0的距離d的取值范圍是( )
A.(4 ,17]
B.(0,4
C.( ,17]
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列{an},定義Hn= 為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”Hn=2n+1 , 記數(shù)列{an﹣kn}的前n項(xiàng)和為Sn , 若Sn≤S5對(duì)任意的n(n∈N*)恒成立,則實(shí)數(shù)k的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案