【題目】設x,y滿足約束條件 ,且目標函數(shù)z=ax+y僅在點(4,1)處取得最大值,則原點O到直線ax﹣y+17=0的距離d的取值范圍是( )
A.(4 ,17]
B.(0,4 )
C.( ,17]
D.(0, )
科目:高中數(shù)學 來源: 題型:
【題目】設p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0);命題q:實數(shù)x滿足
(1)若a=1,且“p且q”為真,求實數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c且acosB=4,bsinA=3.
(1)求tanB及邊長a的值;
(2)若△ABC的面積S=9,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|x+2|+|x﹣2|<18的解集為A.
(1)求A;
(2)若a,b∈A,x∈(0,+∞),不等式a+b<x +m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B為鈍角.
(1)求角C的大;
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設AC=x,AB=y,用x表示y,并求y的最小值;
(2)設∠ACD=θ(θ為銳角),當AB最小時,用θ表示區(qū)域CDE的面積S,并求S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x+2)2+y2=5,直線l:mx﹣y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數(shù)m,使得圓C上有四點到直線l的距離為 ?若存在,求出m的范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com