根據(jù)下列條件,求雙曲線方程.
(1)與雙曲線=1有共同的漸近線,且過點(diǎn)(-3,2);
(2)與雙曲線=1有公共焦點(diǎn),且過點(diǎn)(3,2).

(1)=1.(2)=1

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:()的短軸長為2,離心率為
(1)求橢圓C的方程
(2)若過點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時,求實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個動點(diǎn),

過Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的兩個焦點(diǎn)是)和,并且經(jīng)過點(diǎn),拋物線的頂點(diǎn)E在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F
(1)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)GH,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的離心率等于2,且經(jīng)過點(diǎn)M(-2,3),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,且長軸長是短軸長的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,若,且.
(1)求動點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若斜率為的直線過點(diǎn)并與軌跡交于不同的兩點(diǎn),且對于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,設(shè)P是拋物線C1:x2=y上的動點(diǎn),過點(diǎn)P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A、B兩點(diǎn).

(1)求圓C2的圓心M到拋物線C1準(zhǔn)線的距離;
(2)是否存在點(diǎn)P,使線段AB被拋物線C1在點(diǎn)P處的切線平分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案