已知橢圓C:()的短軸長(zhǎng)為2,離心率為.
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線(xiàn)與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿(mǎn)足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?
(1);(2).
解析試題分析:(1)由題意知,所以,由此能求出橢圓C的方程;(2設(shè)直線(xiàn)方程為,聯(lián)立直線(xiàn)方程與橢圓方程,再由根的判別式和嘏達(dá)定理進(jìn)行求解.
試題解析:(1).
(2)設(shè)直線(xiàn),聯(lián)立橢圓,得,
條件轉(zhuǎn)換一下一下就是,根據(jù)弦長(zhǎng)公式,得到.
然后把把P點(diǎn)的橫縱坐標(biāo)用表示出來(lái),
設(shè),其中要把分別用直線(xiàn)代換,
最后還要根據(jù)根系關(guān)系把消成,得.
然后代入橢圓,得到關(guān)系式,
所以,根據(jù)利用已經(jīng)解的范圍得到.
考點(diǎn):1.橢圓方程及幾何意義;2.直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題;3.平面向量的坐標(biāo)運(yùn)算;4.平面向量的模.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿(mǎn)足:,動(dòng)點(diǎn)滿(mǎn)足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)任作一直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn),直線(xiàn)與直線(xiàn)分別交于點(diǎn)(為坐標(biāo)原點(diǎn));
(i)試判斷直線(xiàn)與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線(xiàn)于、兩點(diǎn),若成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線(xiàn)段為直徑的圓過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線(xiàn)過(guò)點(diǎn)F交拋物線(xiàn)于A、B兩點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)若直線(xiàn)交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對(duì)于直線(xiàn),m+n是否為定值?
若是,求出m+n的值;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱(chēng)軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)直線(xiàn)與橢圓相交于、兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線(xiàn)斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)P到兩圓C1與C2的圓心的距離之和等于4,其中C1:,C2:. 設(shè)點(diǎn)P的軌跡為.
(1)求C的方程;
(2)設(shè)直線(xiàn)與C交于A,B兩點(diǎn).問(wèn)k為何值時(shí)?此時(shí)的值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過(guò)原點(diǎn)O的直線(xiàn)l與C相交于A,B兩點(diǎn),且線(xiàn)段AB被直線(xiàn)OP平分.
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時(shí)直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)x2=4y的焦點(diǎn)為F,過(guò)焦點(diǎn)F且不平行于x軸的動(dòng)直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn),拋物線(xiàn)在A、B兩點(diǎn)處的切線(xiàn)交于點(diǎn)M.
(1)求證:A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線(xiàn)MF交該拋物線(xiàn)于C、D兩點(diǎn),求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
根據(jù)下列條件,求雙曲線(xiàn)方程.
(1)與雙曲線(xiàn)=1有共同的漸近線(xiàn),且過(guò)點(diǎn)(-3,2);
(2)與雙曲線(xiàn)=1有公共焦點(diǎn),且過(guò)點(diǎn)(3,2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com