【題目】y=sin2x的圖象是由函數(shù)y=sin(2x+ )的圖象向( )個(gè)單位而得到.
A.左平移
B.左平移
C.右平移
D.右平移

【答案】D
【解析】解:由于把函數(shù)y=sin2x的圖象向左平移 個(gè)單位,可得函數(shù)y=sin(2x+ )的圖象, 故把函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)單位可得函數(shù)y=sin2x的圖象,
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量和增速均居同一位的省只有1個(gè);

②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長;

③去年同期的總量前三位是江蘇、山東、浙江;

④2016年同期浙江的總量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x+m在區(qū)間 上的最小值為3,求常數(shù)m的值及此函數(shù)當(dāng)x∈[a,a+π](其中a可取任意實(shí)數(shù))時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}為等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S7=7,S15=75,Tn為數(shù)列 的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,,側(cè)面是邊長為4的等邊三角形,底面為菱形,側(cè)面與底面所成的二面角為.

(1)求點(diǎn)到平面的距離;

(2)若的中點(diǎn),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)=sin(2x+ ),下列命題: ①函數(shù)圖象關(guān)于直線x=﹣ 對稱;
②函數(shù)圖象關(guān)于點(diǎn)( ,0)對稱;
③函數(shù)圖象可看作是把y=sin2x的圖象向左平移個(gè) 單位而得到;
④函數(shù)圖象可看作是把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變)而得到;其中正確的命題是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

)當(dāng),時(shí),證明:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)共有學(xué)生195人,其中女生105人,男生90人.現(xiàn)采用按性別分層抽樣的方法,從中抽取13人進(jìn)行問卷調(diào)查.設(shè)其中某項(xiàng)問題的選擇分別為“同意”、“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.

同意

不同意

合計(jì)

女學(xué)生

4

男學(xué)生

2

(Ⅰ)完成上述統(tǒng)計(jì)表;

(Ⅱ)根據(jù)上表的數(shù)據(jù)估計(jì)高三年級(jí)學(xué)生該項(xiàng)問題選擇“同意”的人數(shù);

(Ⅲ) 從被抽取的女生中隨機(jī)選取2人進(jìn)行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)為,左,右頂點(diǎn)為,過點(diǎn)

直線分別交橢圓于點(diǎn).

(1)設(shè)動(dòng)點(diǎn),滿足,求點(diǎn)的軌跡方程;

(2)當(dāng)時(shí),求點(diǎn)的坐標(biāo);

(3)設(shè),求證:直線軸上的定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案