【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個,生產(chǎn)一個湯碗需分鐘,生產(chǎn)一個花瓶需分鐘,生產(chǎn)一個茶杯需分鐘,已知總生產(chǎn)時間不超過小時.若生產(chǎn)一個湯碗可獲利潤元,生產(chǎn)一個花瓶可獲利潤元,生產(chǎn)一個茶杯可獲利潤元.

(1)使用每天生產(chǎn)的湯碗個數(shù)與花瓶個數(shù)表示每天的利潤(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

【答案】(1);(2)元.

【解析】試題分析:(1)由題意可得利潤ω=5x+6y+3(100-xy)=2x+3y+300;(2)根據(jù)題意得到約束條件和目標(biāo)函數(shù),根據(jù)線性規(guī)劃的解題步驟求解即可。

試題解析:

(1)依題意每天生產(chǎn)的茶杯個數(shù)為100-xy,

所以利潤ω=5x+6y+3(100-xy)=2x+3y+300.

(2)由條件得約束條件為

, ,

目標(biāo)函數(shù)為ω=2x+3y+300,

作出不等式組表示的平面區(qū)域(如圖所示),

作初始直線l0:2x+3y=0,平移l0,由圖形知當(dāng)l0經(jīng)過點(diǎn)A時,直線在y軸上的截距最大,此時ω有最大值,

,解得

∴最優(yōu)解為A(50,50),

元.

故每天生產(chǎn)湯碗50個,花瓶50個,茶杯0個時利潤最大,且最大利潤為550元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1, 在直角梯形中, , , , 為線段的中點(diǎn). 沿折起,使平面 平面,得到幾何體,如圖2所示.

1)求證: 平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若為整數(shù),當(dāng)時, 恒成立,求的最大值(其中的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若函數(shù)處的切線平行于直線,求實(shí)數(shù)的值;

(Ⅱ)討論上的單調(diào)性;

(Ⅲ)若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓 上的一點(diǎn),橢圓的右焦點(diǎn)為,斜率為的直線交橢圓、兩點(diǎn),且、三點(diǎn)互不重合.

(1)求橢圓的方程;

(2)求證:直線, 的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于零的等差數(shù)列的前項(xiàng)和為,且,

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.

(3)設(shè)為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得任意的成立若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a|x+b|(a>0,a≠1,b∈R).
(1)若f(x)為偶函數(shù),求b的值;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),試求a、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形).

(1)求四棱錐P-ABCD的體積;

(2)若G為BC上的動點(diǎn),求證AEPG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具廠有方木料,五合板,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料、五合板;生產(chǎn)每個書櫥需要方木枓、五合板.出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案