【題目】某家具廠有方木料,五合板,準備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料、五合板;生產(chǎn)每個書櫥需要方木枓、五合板.出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個,生產(chǎn)一個湯碗需分鐘,生產(chǎn)一個花瓶需分鐘,生產(chǎn)一個茶杯需分鐘,已知總生產(chǎn)時間不超過小時.若生產(chǎn)一個湯碗可獲利潤元,生產(chǎn)一個花瓶可獲利潤元,生產(chǎn)一個茶杯可獲利潤元.
(1)使用每天生產(chǎn)的湯碗個數(shù)與花瓶個數(shù)表示每天的利潤(元);
(2)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修44:坐標系與參數(shù)方程
在直角坐標系中,已知直線l1: (, ),拋物線C: (t為參數(shù)).以原點為極點, 軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求直線l1 和拋物線C的極坐標方程;
(Ⅱ)若直線l1 和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2,l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)當a=0時,求(UA)∩B;
(2)若(UA)∩B恰有2個元素,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,左頂點為
(1)求橢圓的方程;
(2)過點作兩條相互垂直的直線分別與橢圓交于(不同于點的)兩點.試判斷直線與軸的交點是否為定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發(fā)展共享單車隨機調查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如下表:
年齡 | ||||||
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展共享單車人數(shù) | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在的被調查人中隨機選取一人進行調查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列給出四組函數(shù),表示同一函數(shù)的是( )
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=|x|,g(x)=
D.f(x)=1,g(x)=x0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com