【題目】在直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓上,若圓的一條切線(斜率存在)與橢圓C有兩個交點(diǎn)A,B,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求圓O的標(biāo)準(zhǔn)方程;
(3)已知橢圓C的上頂點(diǎn)為M,點(diǎn)N在圓O上,直線MN與橢圓C相交于另一點(diǎn)Q,且,求直線MN的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列滿足,存在實(shí)數(shù),對任意,都有,則稱數(shù)列有上界,是數(shù)列的一個上界,已知定理:單調(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負(fù)數(shù)列滿足,(),求證:1是非負(fù)數(shù)列的一個上界,且數(shù)列的極限存在,并求其極限;
(3)若正項(xiàng)遞增數(shù)列無上界,證明:存在,當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某條公共汽車線路收支差額與乘客量的圖象.由于目前本條線路虧損,公司有關(guān)人員提出了兩種扭虧為盈的建議,如圖2、3所示.你能根據(jù)圖象判斷下列說法正確的是( )
①圖2的建議為減少運(yùn)營成本;②圖2的建議可能是提高票價(jià);
③圖3的建議為減少運(yùn)營成本;④圖3的建議可能是提高票價(jià).
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入3×3的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么不同的三階幻方的個數(shù)是( )
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
A.9B.8C.6D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為,點(diǎn)E,F,G分別為棱AB,,的中點(diǎn),下列結(jié)論中,正確結(jié)論的序號是___________.
①過E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;
②平面EFG;
③平面;
④異面直線EF與所成角的正切值為;
⑤四面體的體積等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓經(jīng)過為坐標(biāo)原點(diǎn),線段的中點(diǎn)在圓上.
(1)求的方程;
(2)直線不過曲線的右焦點(diǎn),與交于兩點(diǎn),且與圓相切,切點(diǎn)在第一象限, 的周長是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(3+x)+lg(3-x).
(1)判斷的奇偶性并加以證明;
(2)判斷的單調(diào)性(不需要證明);
(3)解關(guān)于m的不等式f( m )- f( m+1)﹤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-1,(a∈R),若對任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;
(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com