.(本小題滿分12分)
已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線過(guò)右焦點(diǎn)F與橢圓C交于M,N兩點(diǎn),若AM、AN的斜率 滿足(定值),求直線的斜率。
解:(1)
 2分

解得
      3分
橢圓C的方程是     …………………………4分
(2)若直線斜率不存在,顯然不合題意   ………………………………5分
設(shè)直線方程為
取立方程組
          ……………………………………7分
       ……………………………………8分




              ……………………………………11分

                         ………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,離心率為,經(jīng)過(guò)其左焦點(diǎn)的直線交橢圓、兩點(diǎn)(I)求橢圓的方程;
(II)在軸上是否存在一點(diǎn),使得恒為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左、右焦點(diǎn)分別為、,點(diǎn)在雙曲線的右支上,直線為過(guò)且切于雙曲線的直線,且平分,過(guò)作與直線平行的直線交點(diǎn),則,利用類(lèi)比推理:若橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,直線為過(guò)且切于橢圓的直線,且平分的外角,過(guò)作與直線平行的直線交點(diǎn),則的值為 (     )  
A.B.C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
如圖6,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),
是線段軸的交點(diǎn), .

(I)求動(dòng)點(diǎn)的軌跡的方程
(II)設(shè)圓過(guò),且圓心在曲線上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2
(1)求雙曲線C的方程;
(2)若直線lykx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍
(3)在(2)的條件下,線段AB的垂直平分線l0y軸交于M(0,m),求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知定點(diǎn)A(12,0),M為曲線上的動(dòng)點(diǎn),(1)若,試求動(dòng)點(diǎn)P的
軌跡C的方程.2)若與曲線C相交于不同的兩點(diǎn)E、F, O為坐標(biāo)原點(diǎn)且,求∠EOF的余弦值和實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則的值為(   )
A.-6B.6C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖邊長(zhǎng)為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現(xiàn)需在其余部分設(shè)計(jì)一個(gè)矩形草坪PNCQ,其中P是水池邊上任意一點(diǎn),點(diǎn)N、Q分別在邊BC和CD上,設(shè)∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點(diǎn)P到邊BC和AB距離之比的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


本小題滿分12分)
如圖,已知橢圓C1的中心在原點(diǎn)O,長(zhǎng)軸左、右端點(diǎn)M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D.

(1)設(shè),求的比值;
(2)當(dāng)e變化時(shí),是否存在直線l,使得BO∥AN,并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案