【題目】函數(shù) 的定義域是( )
A.[﹣2,2]
B.(﹣∞,﹣2]∪[2,+∞)
C.(﹣2,2)
D.(﹣∞,﹣2)∪(2,+∞)
【答案】D
【解析】解:函數(shù) ,
∴|x|﹣2>0,
即|x|>2,
解得x<﹣2或x>2,
∴函數(shù)y的定義域是(﹣∞,﹣2)∪(2,+∞).
故選:D.
【考點(diǎn)精析】利用函數(shù)的定義域及其求法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,直線l:x﹣ty﹣2=0.
(1)若直線l與曲線y=f(x)有且僅有一個(gè)公共點(diǎn),求公共點(diǎn)橫坐標(biāo)的值;
(2)若0<m<n,m+n≤2,求證:f(m)>f(n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A,B,求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某班甲、乙兩位同學(xué)在5次階段性檢測(cè)中的數(shù)學(xué)成績(jī)(百分制)的莖葉圖,甲、乙兩位同學(xué)得分的中位數(shù)分別為x1 , x2 , 得分的方差分別為y1 , y2 , 則下列結(jié)論正確的是( )
A.x1<x2 , y1<y2
B.x1<x2 , y1>y2
C.x1>x2 , y1>y2
D.x1>x2 , y1<y2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,a1=1,且a1 , a2 , a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,DA⊥平面PAB,DC∥AB,DA=DC=2,AB=AP=4,∠PAB=120°,M為PB中點(diǎn).
(Ⅰ)求證:CM∥平面PAD;
(Ⅱ)求二面角M﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,則關(guān)于x的方程[f(x)]2﹣f(x)+a=0(a∈R)的實(shí)數(shù)解的個(gè)數(shù)不可能是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sin2x+ ,x∈(0,π).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC為銳角三角形,角A所對(duì)邊a= ,角B所對(duì)邊b=5,若f(A)=0,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 + = .
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com