【題目】已知函數(shù) ,則關(guān)于x的方程[f(x)]2﹣f(x)+a=0(a∈R)的實數(shù)解的個數(shù)不可能是( )
A.2
B.3
C.4
D.5
【答案】A
【解析】解:當x<0時,f′(x)=﹣ ﹣1<0,
∴f(x)在(﹣∞,0)上是減函數(shù),
當x>0時,f(x)=|lnx|= ,
∴f(x)在(0,1)上是減函數(shù),在[1,+∞)上是增函數(shù),
做出f(x)的大致函數(shù)圖象如圖所示:
設f(x)=t,則當t<0時,方程f(x)=t有一解,
當t=0時,方程f(x)=t有兩解,
當t>0時,方程f(x)=t有三解.
由[f(x)]2﹣f(x)+a=0,得t2﹣t+a=0,
若方程t2﹣t+a=0有兩解t1,t2,則t1+t2=1,
∴方程t2﹣t+a=0不可能有兩個負實數(shù)根,
∴方程[f(x)]2﹣f(x)+a=0不可能有2個解.
故選A.
科目:高中數(shù)學 來源: 題型:
【題目】若向量 ,在函數(shù) 的圖象中,對稱中心到對稱軸的最小距離為 ,且當 的最大值為1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.
(1)求證:BD⊥EG;
(2)求平面DEG與平面DEF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點與拋物線y2=4x的焦點F重合,且橢圓的離心率是 ,如圖所示.
(1)求橢圓的標準方程;
(2)拋物線的準線與橢圓在第二象限相交于點A,過點A作拋物線的切線l,l與橢圓的另一個交點為B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的五面體中,面ABCD為直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是邊長為2的正三角形.
(Ⅰ)證明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f﹣1(x),若g(x)= 為奇函數(shù),則f﹣1(x)=2的解為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù) 圖象的一部分.為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 ,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 ,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com