已知橢圓C:
的焦點為
,若點P在橢圓上,且滿足
(其中
為坐標原點),則稱點P為“★點”,那么下列結(jié)論正確的是 ( )
A.橢圓上的所有點都是“★點” |
B.橢圓上僅有有限個點是“★點” |
C.橢圓上的所有點都不是“★點” |
D.橢圓上有無窮多個點(但不是所有的點)是“★點” |
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設
分別是橢圓
的左、右焦點,過
斜率為1的直線
與
相交于
兩點,且
成等差數(shù)列。
(1)求
的離心率;
(2)設點
滿足
,求
的方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知
是橢圓
的兩個焦點,
為坐標原點,點
在橢圓上,且
,⊙
是以
為直徑的圓,直線
:
與⊙
相切,并且與橢圓交于不同的兩點
(1)求橢圓的標準方程;
(2)當
,且滿足
時,求弦長
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在直角坐標系
中,已知橢圓
:
的離心率
,左、右兩個焦點分別為
、
。過右焦點
且與
軸垂直的直線與橢圓
相交
、
兩點,且
.
(1)求橢圓
的方程;
(2)設橢圓
的左頂點為
,下頂點為
,動點
滿足
,試求點
的軌跡方程,使點
關于該軌跡的對稱點落在橢圓
上.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的上頂點為
,左右焦點分別為
,直線
與圓
:
相切,若橢圓上點
使得
成等比數(shù)列
求
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過點(-3,2)且與
有相同的焦點的橢圓的方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知動點P(x,y)在橢圓
上,若F(3,0),
,且M為PF中點,則
=_____.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
16.在△ABC中,∠A=15°,∠B=105°,若以A,B為焦點的橢圓經(jīng)過點C.則該橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知橢圓
的左、右準線分別為
l1、
l2,且分別交
x軸于
C、
D兩點,從
l1上一點
A發(fā)出一條光線經(jīng)過橢圓的左焦點
F被
x軸反射后與
l2交于點
B,若
,且
,則橢圓的離心率等于_____________.
查看答案和解析>>