12.已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同的動點(包括端點A1,C1).給出以下四個結(jié)論:
①存在P,Q兩點,使BP⊥DQ;
②存在P,Q兩點,使BP,DQ與直線B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的是①③④.

分析 令P與A1點重合,Q與C1點重合,可判斷①正確;
空間中任意直線與BP,DQ夾角相等時,夾角最小值為45°,可判斷②錯誤;
根據(jù)平面OBD將四面體BDPQ可分成兩個底面均為平面OBD,高之和為PQ的棱錐(其中O為上底面中心),可判斷③正確;
根據(jù)四面體BDPQ在該正方體六個面上的正投影的面積不變,可判斷④正確.

解答 解:當P與A1點重合,Q與C1點重合時,BP⊥DQ,①正確;
由①正確,可得空間中任意直線與BP,DQ夾角相等時,
夾角最小值為45°,②錯誤;
設(shè)平面A1B1C1D1兩條對角線交點為O,則易得PQ⊥平面OBD,平面OBD將四面體BDPQ可分成兩個底面均為平面OBD,高之和為PQ的棱錐,故四面體BDPQ的體積一定是定值,③正確;
四面體BDPQ在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定值,
四面體BDPQ在四個側(cè)面上的投影,均為上底為$\frac{\sqrt{2}}{2}$,下底和高均為1的梯形,其面積為定值,
故四面體BDPQ在該正方體六個面上的正投影的面積的和為定值,④正確;
綜上,正確的命題是①③④.
故答案為:①③④.

點評 本題考查了正方體的幾何特征,是空間異面直線關(guān)系,棱錐體積以及投影的綜合應(yīng)用問題,是難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.假設(shè)一批產(chǎn)品中一、二、三等品各占60%、30%、10%,從中隨機取出一件,結(jié)果不是三等品,則取到的是一等品的概率為:$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x∈R|f(x)=log2(x-2)},B={y∈R|y=log2(x-2)},則A∩B=( 。
A.(0,2)B.(0,2]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{x}$+x,且直線y=-$\frac{1}{2}$是曲線y=f(x)的一條切線.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)對任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求實數(shù)b的取值范圍;
(Ⅲ)已知方程f(x)=cx有兩個根x1,x2(x1<x2),若b=1時有g(shù)(x1+x2)+m+2c=0,求證:m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sinθ>0且cosθ<0,則θ是第二象限角,若sinθ•tanθ<0,則θ是第二、三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,AB=BC=1,∠ABC=$\frac{π}{2}$,BB1=2,∠BCC1=$\frac{π}{3}$.
(1)求證:BC⊥平面ABC1;
(2)若側(cè)面BB1C1C⊥平面ABC,求三棱錐C1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A、B、C的對邊分別為a,b,c且A:B:C=2:1:3,則a:b:c=( 。
A.2:1:3B.3:2:1C.$1:\sqrt{3}:2$D.$\sqrt{3}:1:2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:?x∈R,log3(3x+1)>0,則( 。
A.p是假命題;¬p:?x∈R,log3(3x+1)>0B.p是假命題;¬p:?x∈R,log3(3x+1)≤0
C.p是真命題;¬p:?x∈R,log3(3x+1)>0D.p是真命題;¬p:?x∈R,log3(3x+1)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,則△ABC的面積的最大值為( 。
A.8B.16C.$10\sqrt{3}$D.$8\sqrt{6}$

查看答案和解析>>

同步練習冊答案