某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
解法1:(1)選擇②式,計(jì)算如下:
sin215°+cos215°-sin15°cos15°
=1-sin30°=1-=.
(2)三角恒等式為sin2α+cos2(30°-α)-sinαcos(30°-α)=.
證明如下:
sin2α+cos2(30°-α)-sinαcos(30°-α)
=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)
=sin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2α=sin2α+cos2α=.
解法2:
(1)同解法1.
(2)三角恒等式為sin2α+cos2(30°-α)-sinαcos(30°-α)=.
證明如下:
sin2α+cos2(30°-α)-sinαcos(30°-α)
=+-sinα(cos30°cosα+sin30°sinα)
=-cos2α++(cos60°cos2α+sin60°sin2α)-sinαcosα-sin2α
=-cos2α++cos2α+sin2α-sin2α-(1-cos2α)
=1-cos2α-+cos2α
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)a,b為正實(shí)數(shù),現(xiàn)有下列命題:
①若a2-b2=1,則a-b<1;
②若-=1,則a-b<1;
③若|-|=1,則|a-b|<1;
④若|a3-b3|=1,則|a-b|<1.
其中的真命題有________.(寫出所有真命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在復(fù)平面內(nèi),復(fù)數(shù)(2-i)2對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10=( )
A.28 B.76
C.123 D.199
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
凸函數(shù)的性質(zhì)定理:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對(duì)于區(qū)間D內(nèi)的任意x1,x2,…,xn,有,已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用數(shù)學(xué)歸納法證明“1+2+…+n+(n-1)…+2+1=n2(n∈N+)”,從n=k到n=k+1時(shí),左邊添加的代數(shù)式為( )
A.k+1 B.k+2
C.k+1+k D.2(k+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在梯形ABCD中,AD∥BC,BD與AC相交于點(diǎn)O,過點(diǎn)O的直線分別交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,則EF=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com