函數(shù),在(0,+¥ )上是增加的求a的取值范圍.

答案:略
解析:

由于,在(0,+¥ )上是增加的,所以,∴,即


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+mx2+nx+p在(-∞,0]上是增函數(shù),在[0,2]上是減函數(shù),x=2是方程f(x)=0的一個(gè)根.
(1)求n的值;
(2)求證:f(1)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于函數(shù)y=sinx,x∈[-π,π]的單調(diào)性的敘述,正確的是( 。
A、在[-π,0]上是增函數(shù),在[0,π]上是減函數(shù)
B、在[-
π
2
,
π
2
]
上是增函數(shù),在[-π,-
π
2
]及[
π
2
,π]上是減函數(shù)
C、在[0,π]上是增函數(shù),在[-π,0]上是減函數(shù)
D、在[
π
2
,π]及[-π,-
π
2
]上是增函數(shù),在[-
π
2
,
π
2
]
上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d在(-∞,0)上為增函數(shù),在[0,2]上為減函數(shù),f(2)=0.
(1)求c的值;
(2)求證:f(1)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知f(x)=ax3+x2+cx是定義在R上的函數(shù),f(x)在[-1,0]和[4,5]上是減函數(shù),在[0,2]上是增函數(shù).
(I)求c的值;
(II)求a的取值范圍;
(III)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x0,y0),使得曲線y=f(x)在點(diǎn)M處的切線的斜率為3,若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案