【題目】設(shè)全集UR,集合,B{y|y2xx1},C{x|2axa+1}

1)求AUB;

2)若CAB),求實(shí)數(shù)a的取值范圍.

【答案】1AUB{x|2x0};(2a≥﹣1

【解析】

1)解不等式求出集合A,求值域得出集合B,再求AUB;

2)由CAB),討論CC時(shí),從而求出實(shí)數(shù)a的取值范圍.

1)集合A{x|3x+2+31x28}

{x|93x+33x28}

{x|93x2283x+30}

{x|3x3}

{x|2x1},

B{y|y2xx1}{y|0y2},

UB{x|x0x2},

AUB{x|2x0};

2)由AB{x|2x2},

CAB),

當(dāng)C時(shí),滿足題意,可得2aa+1

解得:a1;

當(dāng)C時(shí),要使CAB),

,解得﹣1a1

綜上知,實(shí)數(shù)a的取值范圍是a≥﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在x=2處取得極值,求的極大值;

(2)若對(duì)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:①對(duì)于任意的都有成立;②當(dāng)時(shí),;;則不等式的解集為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

3)為了計(jì)算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺(tái)采訪,請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)于下表中,通過散點(diǎn)圖可以看出樣本點(diǎn)分布在一條指數(shù)型函數(shù)y=的圖象的周圍.

(1)試求出y關(guān)于x的上述指數(shù)型的回歸曲線方程(結(jié)果保留兩位小數(shù));

(2)試用(1)中的回歸曲線方程求相應(yīng)于點(diǎn)(24,17)的殘差.(結(jié)果保留兩位小數(shù))

溫度x(°C)

20

22

24

26

28

30

產(chǎn)卵數(shù)y(個(gè))

6

9

17

25

44

88

z=lny

1.79

2.20

2.83

3.22

3.78

4.48

幾點(diǎn)說明:

①結(jié)果中的都應(yīng)按題目要求保留兩位小數(shù).但在求時(shí)請(qǐng)將的值多保留一位即用保留三位小數(shù)的結(jié)果代入.

②計(jì)算過程中可能會(huì)用到下面的公式:回歸直線方程的斜率==,截距.

③下面的參考數(shù)據(jù)可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時(shí),判斷的單調(diào)性;

(Ⅱ)當(dāng)時(shí),恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的單調(diào)遞減的奇函數(shù),當(dāng)時(shí),.

(1)求的值;

(2)求的解析式;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)玩游戲,對(duì)于給定的實(shí)數(shù),按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一枚均勻的硬幣,如果出現(xiàn)兩個(gè)正面朝上或兩個(gè)反面朝上,則把乘以2后再減去6;如果出現(xiàn)一個(gè)正面朝上,一個(gè)反面朝上,則把除以2后再加上6,這樣就可得到一個(gè)新的實(shí)數(shù),對(duì)實(shí)數(shù)仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù),當(dāng)時(shí),甲獲勝,否則乙獲勝,若甲勝的概率為,則的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱各條棱的長度均相等,的中點(diǎn),分別是線段和線段上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( )

A. 內(nèi)總存在與平面平行的線段

B. 平面平面

C. 三棱錐的體積為定值

D. 可能為直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案