【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得數(shù)據(jù)如下表(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中 )
抗倒伏數(shù)據(jù)如下:
143 147 147 151 153 153 157 159 160 164 166 169 174 175 175
180 188 188 192 195 195 199 203 206 206
易倒伏數(shù)據(jù)如下:
151 167 175 178 181 182 186 186 187 190 190 193 194 195 198
199 199 202 202 203
(1)完成 2×2 列聯(lián)表,并說明能否在犯錯概率不超過0.01的條件下認為抗倒伏是否與玉米矮莖有關?
(2)(i)按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽出9株玉米,再從這9株中取出兩株進行雜交試驗,設取出的易倒伏玉米株數(shù)為X,求X的分布列(概率用組合數(shù)算式表示);
(ii)若將頻率視為概率,從抗倒伏的玉米試驗田中再隨機取出50株,求取出的高莖玉米株數(shù)的數(shù)學期望和方差.
【答案】(1)列聯(lián)表見解析,能在犯錯概率不超過0.01的條件下認為抗倒伏是否與玉米矮莖有關;(2)(i)見解析;(ii)期望為,方差為
【解析】
(1)根據(jù)題意得出2×2 列聯(lián)表,根據(jù)公式計算出即可得解;
(2)(i)根據(jù)分層抽樣得易倒伏4株,抗倒伏5株,分別計算概率即可得到分布列;
(ii)利用二項分布求解期望和方差.
(1)根據(jù)統(tǒng)計數(shù)據(jù)可得2×2 列聯(lián)表,
抗倒伏 | 易倒伏 | 合計 | |
矮莖 | 15 | 4 | 19 |
高莖 | 10 | 16 | 26 |
合計 | 25 | 20 | 45 |
所以能在犯錯概率不超過0.01的條件下認為抗倒伏是否與玉米矮莖有關;
(2)(i)按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽出9株玉米,
則易倒伏4株,抗倒伏5株,從這9株中取出兩株進行雜交試驗,設取出的易倒伏玉米株數(shù)為X,則X所有可能的取值為0,1,2,
X的分布列如下:
P | 0 | 1 | 2 |
X |
(ii)若將頻率視為概率,從抗倒伏的玉米中取出的高莖玉米概率為
從抗倒伏的玉米試驗田中再隨機取出50株,記取出的高莖玉米株數(shù)為隨機變量Y,
則
Y的數(shù)學期望和方差分別為
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共13分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。
EF//AC,AB=,CE=EF=1
(Ⅰ)求證:AF//平面BDE;
(Ⅱ)求證:CF⊥平面BDF;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解地區(qū)足球特色學校的發(fā)展狀況,某調(diào)查機構(gòu)得到如下統(tǒng)計數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計算與的相關系數(shù),并說明與的線性相關性強弱(已知:,則認為與線性相關性很強;,則認為與線性相關性一般;,則認為與線性相關性較弱);
(2)求關于的線性回歸方程,并預測地區(qū)2019年足球特色學校的個數(shù)(精確到個).
本題參考公式和數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】試求出正整數(shù)的最小可能值,使得下述命題成立:對于任意的個整數(shù)(允許相等),必定存在相應的個整數(shù)(也允許相等),且,,使得2003能整除.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,雙曲線 (a,b>0)的左右焦點分別為F1(-c,0),F2(c,0),左頂點為A,左準線為l,過F1作直線交雙曲線C左支于P,Q兩點,則下列命題正確的是( )
A.若PQ⊥x軸,則△PQF2的周長為
B.連PA交l于D,則必有QD//x軸
C.若PQ中點為M,則必有PQ⊥MF2
D.連PO交雙曲線C右支于點N,則必有PQ//NF2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三角形的三邊長是成等差數(shù)列的正整數(shù),其最長邊不大于正整數(shù)時的三角形個數(shù)記為(凡全等的三角形只算1個).寫出,,,,再找出的計算公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某市高中學生的漢字書寫水平,在全市范圍內(nèi)隨機抽取了近千名學生參加漢字聽寫考試,將所得數(shù)據(jù)進行分組,分組區(qū)間為:,并繪制出頻率分布直方圖,如圖所示.
(1)求頻率分布直方圖中的值,并估計該市高中學生的平均成績;
(2)設、、、四名學生的考試成績在區(qū)間內(nèi),、兩名學生的考試成績在區(qū)間內(nèi),現(xiàn)從這6名學生中任選兩人參加座談會,求學生、至少有一人被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線(為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線與交于,兩點,與交于,兩點.當時,;當,.
(1)求和的值.
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐M-ABC中,MA=MB=MC=AC=,AB=BC=2,O為AC的中點,點N在邊BC上,且.
(1)證明:BO平面AMC;
(2)求二面角N-AM-C的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com