已知f(log2x)=
ax+b
x+
2
,(a,b∈R,x>0),求f(x)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質及應用
分析:令t=log2x換元,然后化對數(shù)式為指數(shù)式,把x用含有t的代數(shù)式表示,則函數(shù)f(x)的解析式可求.
解答: 解:令t=log2x,則x=2t
故f(t)=
a•2t+b
2t+
2

∴f(x)=
a•2x+b
2x+
2
點評:本題考查了函數(shù)解析式的求解及常用方法,考查了換元法求函數(shù)解析式,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若變量x、y滿足約束條件
y≤x 
x+y≤1
y≥-1  
,且z=2x+y的最大值和最小值分別為M和m,則M-m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,角A,B,C的對邊分別是a,b,c,且滿足acosB=
2
bsinA,則
3
sinC
-2cosA的最大值為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin2x-
3
sinxcosx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知log73=a,7b=4,用a,b表示log4948是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-2,0),N(2,0),若以點M、N為焦點的雙曲線C過直線x+y=1上的點Q,求實軸最長的雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列結論:
①存在實數(shù)x,使得sinx+cosx=
3
2
;
②若α,β為第一象限角,且α>β,則tanα>tanβ;
③函數(shù)y=cos(
2x
3
+
2
)是奇函數(shù);其中正確的結論是
 
(把你認為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2+log3x,x∈[1,9],則函數(shù)y=[f(x)]2+f(x 
1
2
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-x2,若?x∈[1,2],不等式-m≤f(x)≤m2-4恒成立,則實數(shù)m的取值范圍是( 。
A、(-∞,1-e]
B、[1-e,e]
C、[-e,e+1]
D、[e,+∞)

查看答案和解析>>

同步練習冊答案