精英家教網 > 高中數學 > 題目詳情

【題目】未知數的個數多余方程個數的方程(組)叫做不定方程,最早提出不定方程的是我國的《九章算術》.實際生活中有很多不定方程的例子,例如百雞問題:公元五世紀末,我國古代數學家張丘建在《算經》中提出了百雞問題雞母一,值錢三;雞翁一,值錢二;雞雛二,值錢一.百錢買百雞,問雞翁、母、雛各幾何?

算法設計:

(1)設母雞、公雞、小雞數分別為、,則應滿足如下條件

(2)先分析一下三個變量的可能值.的最小值可能為零,若全部錢用來買母雞,最多只能買33只,

的值為中的整數的最小值為零,最大值為50.的最小值為零最大值為100.

(3)對、、三個未知數來說取值范圍最少為提高程序的效率,先考慮對的值進行一一列舉

(4)在固定一個的值的前提下再對值進行一一列舉

(5)對于每個,,怎樣去尋找滿足百年買百雞條件的.由于值已設定,便可由下式得到:

(6)這時的,是一組可能解,它只滿足百雞條件,還未滿足百錢.是否真實解,還要看它們是否滿足,滿足即為所求解

根據上述算法思想,畫出流程圖并用偽代碼表示.

【答案】流程圖見解析,偽代碼見解析.

【解析】

試題分析:依據題設條件運用算法流程框圖表示和運用偽代碼語言描述算法流程求解.

試題解析:

這是一個循環(huán)結構的嵌套,可以用循環(huán)語句實現.

偽代碼:

流程圖:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設數列滿足 (), .

(1)求證: 是等比數列,并求出數列的通項公式;

(2)對任意的正整數,當時,不等式恒成立,求實數的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足,且,

(Ⅰ)求證:數列是等比數列;

(Ⅱ)設是數列的前項和,若對任意的都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1時,討論的單調性;

2若對任意的恒有成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費, 并注冊成為會員, 對會員逐次消費給予相應優(yōu)惠,標準如下:

消費次第






收費比例






該公司從注冊的會員中, 隨機抽取了位進行統(tǒng)計, 得到統(tǒng)計數據如下:

消費次第






頻數






假設汽車美容一次, 公司成本為, 根據所給數據, 解答下列問題:

1)估計該公司一位會員至少消費兩次的概率;

2)某會員僅消費兩次, 求這兩次消費中, 公司獲得的平均利潤;

3)以事件發(fā)生的頻率作為相應事件發(fā)生的概率, 設該公司為一位會員服務的平均利潤為, 的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某校高三上學期期末數學考試成績中,隨機抽取了名學生的成績得到頻率分布直方圖如下:

(1)若用分層抽樣的方法從分數在的學生中共抽取人,該人中成績在的有幾人?

(2)在(1)中抽取的人中,隨機抽取人,求分數在人的概率.

(3)根據頻率分布直方圖,估計該校高三學生本次數學考試的平均分;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加了其中一組,在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動總人數的,且該組中青年人占50%,中年人占40%,老年人占10%.為了了解各組不同年齡層次的職工對本次活動的滿意程度,現用分層抽樣方法從參加活動的全體職工中抽取一個容量為200的樣本,試確定:

(1)游泳組中,青年人、中年人、老年人分別所占的比例;

(2)游泳組中,青年人、中年人、老年人分別應抽取的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且,設,數列滿足.

(1)求數列的通項公式;

(2)求數列的前項和;

(3)若對一切正整數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的內角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cos C=.

()求ABC的周長; ()求cos A的值.

查看答案和解析>>

同步練習冊答案