【題目】已知數(shù)列滿足,且,.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,若對(duì)任意的都成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:
(1)利用題中的遞推關(guān)系計(jì)算可得后項(xiàng)與前項(xiàng)的比值為定值,計(jì)算首項(xiàng)為即可證得數(shù)列為等比數(shù)列;
(2)原問(wèn)題轉(zhuǎn)化為對(duì)任意的都成立,分類討論可得:實(shí)數(shù)的取值范圍是.
試題解析:
(Ⅰ)因?yàn)?/span>,,,
所以,
所以,
又,
所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
(Ⅱ)由(Ⅰ)得,,即,
則
.
又 ,
要使對(duì)任意的都成立,
即(*)對(duì)任意的都成立.
①當(dāng)為正奇數(shù)時(shí),由(*)得,,
即,
因?yàn)?/span>,
所以對(duì)任意的正奇數(shù)都成立,
當(dāng)且僅當(dāng)時(shí),有最小值1,
所以.
②當(dāng)為正偶數(shù)時(shí),由(*)得,
,
即,
因?yàn)?/span>,
所以對(duì)任意的正偶數(shù)都成立.
當(dāng)且僅當(dāng)時(shí),有最小值,所以.
綜上所述,存在實(shí)數(shù),使得對(duì)任意的都成立,
故實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如右表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為( )
A.18萬(wàn)元 B.17萬(wàn)元 C.16萬(wàn)元 D.12萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.
(1)求的值;
(2)若在(其中)上是單調(diào)函數(shù),求的取值范圍;
(3)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分別是BC,PC的中點(diǎn)。
(1)求證:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》是我國(guó)古代數(shù)學(xué)名著.在這部著作中,許多數(shù)學(xué)問(wèn)題都是以歌訣形式呈現(xiàn)的,“竹筒容米”就是其中一首:家有八節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三生九,上梢三節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根8節(jié)長(zhǎng)的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的,下端3節(jié)可盛米3.9升,上端3節(jié)可盛米3升.要按依次盛米容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升?由以上條件,計(jì)算出這根八節(jié)竹筒的容積為( )
A. 升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線:x=6,圓與軸相交于點(diǎn)(如圖),點(diǎn)P(-1,2)是圓內(nèi)一點(diǎn),點(diǎn)為圓上任一點(diǎn)(異于點(diǎn)),直線與相交于點(diǎn).
(1)若過(guò)點(diǎn)P的直線與圓相交所得弦長(zhǎng)等于,求直線的方程;
(2)設(shè)直線的斜率分別為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于兩點(diǎn)的直線,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】未知數(shù)的個(gè)數(shù)多余方程個(gè)數(shù)的方程(組)叫做不定方程,最早提出不定方程的是我國(guó)的《九章算術(shù)》.實(shí)際生活中有很多不定方程的例子,例如“百雞問(wèn)題”:公元五世紀(jì)末,我國(guó)古代數(shù)學(xué)家張丘建在《算經(jīng)》中提出了“百雞問(wèn)題”:“雞母一,值錢三;雞翁一,值錢二;雞雛二,值錢一.百錢買百雞,問(wèn)雞翁、母、雛各幾何?”
算法設(shè)計(jì):
(1)設(shè)母雞、公雞、小雞數(shù)分別為、、,則應(yīng)滿足如下條件:
;.
(2)先分析一下三個(gè)變量的可能值.①的最小值可能為零,若全部錢用來(lái)買母雞,最多只能買33只,
故的值為中的整數(shù).②的最小值為零,最大值為50.③的最小值為零,最大值為100.
(3)對(duì)、、三個(gè)未知數(shù)來(lái)說(shuō),取值范圍最少.為提高程序的效率,先考慮對(duì)的值進(jìn)行一一列舉.
(4)在固定一個(gè)的值的前提下,再對(duì)值進(jìn)行一一列舉.
(5)對(duì)于每個(gè),,怎樣去尋找滿足百年買百雞條件的.由于,值已設(shè)定,便可由下式得到:.
(6)這時(shí)的,,是一組可能解,它只滿足“百雞”條件,還未滿足“百錢”.是否真實(shí)解,還要看它們是否滿足,滿足即為所求解.
根據(jù)上述算法思想,畫出流程圖并用偽代碼表示.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com