已知不等式|2|x|-2|x-a||≤2(a>1)的解為1≤x≤2,求實(shí)數(shù)a的值.
考點(diǎn):絕對值不等式的解法
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:利用絕對值的幾何意義,結(jié)合1≤x≤2,即可求實(shí)數(shù)a的值
解答: 解:∵不等式|2|x|-2|x-a||≤2,
∴-2≤2|x|-2|x-a|≤2,
∴|x|-1≤|x-a|≤|x|+1,
∵1≤x≤2,
∴x-1≤|x-a|≤x+1,
a≥2時(shí),x-1≤a-x≤x+1,
∴a-1≤2x≤a+1,∴a=3.
1<a<2,若x>a,則x-1≤x-a≤x+1,-1≤-a≤1,矛盾,
若x≤a,則x-1≤a-x≤x+1,∴a=3,矛盾,
∴a=3.
點(diǎn)評:本題考查絕對值不等式的解法,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1+i
i3
的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=2,且對任意的正整數(shù)n,m,都有an+m=an+am
(Ⅰ)求出a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式an(不需要證明);
(Ⅱ)設(shè)bn=
1
2n+1
•an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A∪B=B,求a的取值范圍;
(2)若B?A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2
(1)若方程f(x)=t有三個(gè)不等的實(shí)根,求實(shí)數(shù)t的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)+mx,若g(x)的極值存在,求實(shí)數(shù)m的取值范圍;
(3)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=f′(1),若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)y=f′(x)的圖象上,求證:點(diǎn)(n,Sn)也在y=f′(x)的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2sinxcosx-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
π
4
,
π
4
]時(shí),求函數(shù)f(x)的最大值,并寫出x相應(yīng)的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程ax2+4x+1=0的解集為A,且A中有兩個(gè)元素,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算log3
27
+lg25+lg4+7 log72+(-9.8)0
(2)比較三個(gè)數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin(
πx
3
-
π
3
﹚-1.
(1)求函數(shù)最小正周期及單調(diào)遞增區(qū)間;
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=2對稱,求當(dāng)x∈[0,1]時(shí),函數(shù)y=g(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案