設(shè)橢圓的方程為=1(m,n>0),過原點(diǎn)且傾角為θπθ(0<θ=的兩條直線分別交橢圓于A、CB、D兩點(diǎn),

(Ⅰ)用θ、m、n表示四邊形ABCD的面積S

(Ⅱ)若m、n為定值,當(dāng)θ在(0,]上變化時,求S的最小值u;

(Ⅲ)如果μ>mn,求的取值范圍.

答案:
解析:

解:(Ⅰ)設(shè)經(jīng)過原點(diǎn)且傾角為θ的直線方程為y=xtanθ,可得方程組又由對稱性,得四邊形ABCD為矩形,同時0<θ,所以四邊形ABCD的面積S=4|xy|=

(Ⅱ)S

(1)當(dāng)m>n,即<1時,因?yàn)?img align="middle"" width=41 height=47 src="http://thumb.zyjl.cn/pic7/pages/60RD/0094/0047/af8be59df82353d37cd6f9ddb0fd4ec3/C/image012.gif" v:shapes="_x0000_i1042">+m2tanθ≥2nm,當(dāng)且僅當(dāng)tan2θ時等號成立,所以

由于0<θ,0<tanθ≤1,

故tanθu=2mn

(2)當(dāng)m<n,即>1時,對于任意0<θ1θ2,

由于

因?yàn)?<tanθ1<tanθ2≤1,m2tanθ1tanθ2n2m2n2<0,所以(m2tanθ2)-(m2tanθ1)<0,于是在(0,]上,Sθ的增函數(shù),故取θ,即tanθ=1得u

所以u

(Ⅲ)(1)當(dāng)>1時,u=2mn>mn恒成立.

(2)當(dāng)<1時, >1,即有(2-4()+1<0,

所以,又由<1,

.

綜上,當(dāng)u>mn時,的取值范圍為(2-,1)∪(1,+∞).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

設(shè)橢圓的方程為=1(m,n>0),過原點(diǎn)且傾角為θπθ(0<θ=的兩條直線分別交橢圓于A、CBD兩點(diǎn),

(Ⅰ)用θ、m、n表示四邊形ABCD的面積S;

(Ⅱ)若m、n為定值,當(dāng)θ在(0,]上變化時,求S的最小值u;

(Ⅲ)如果μ>mn,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年綜合模擬數(shù)學(xué)卷三 題型:044

設(shè)橢圓C1的方程為=1,(a>b>0).曲線C2的方程為y=.且C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P.

(1)試用a表示點(diǎn)P的坐標(biāo);

(2)設(shè)A,B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;

(3)記min{y1,y2…yn}為y1,y2…yn中最小的一個,設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a),S(a)}的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044

設(shè)橢圓的方程為=1(m、n>0),過原點(diǎn)且傾角為θ和π-θ(0<θ<)的兩條直線分別交橢圓于A、C和B、D兩點(diǎn).

(1)

用θ、m、n表示四邊形ABCD的面積S

(2)

若m、n為定值,當(dāng)θ在(0,]上變化時,求S的最大值u

(3)

如果u>mn,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年全國普通高等學(xué)校招生統(tǒng)一考試、文科數(shù)學(xué)(上海卷) 題型:044

已知橢圓的方程為=1(a>b>0),A(0,b)、B(0,-b)和Q(a,0)為的三個頂點(diǎn).

(1)若點(diǎn)M滿足,求點(diǎn)M的坐標(biāo);

(2)設(shè)直線l1yk1xp交橢圓C、D兩點(diǎn),交直線l2yk2x于點(diǎn)E.若k1·k2,證明:ECD的中點(diǎn);

(3)設(shè)點(diǎn)P在橢圓內(nèi)且不在x軸上,如何構(gòu)作過PQ中點(diǎn)F的直線l,使得l與橢圓的兩個交點(diǎn)P1,P2滿足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1).若橢圓上的點(diǎn)P1P2滿足,求點(diǎn)P1P2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案