求證:m
C
m
n
=n
C
m-1
n-1
(m≤n,m,n∈N+).
考點(diǎn):組合及組合數(shù)公式
專(zhuān)題:排列組合
分析:根據(jù)組合數(shù)公式
C
m
n
=
n!
m!•(n-m)!
,代入化簡(jiǎn)即可.
解答: 證明:當(dāng)m≤n,且m,n∈N+時(shí),
m
C
m
n
=m•
n!
m!•(n-m)!

=n•
(n-1)!
(m-1)!•[(n-1)-(m-1)]!

=n
C
m-1
n-1
點(diǎn)評(píng):本題考查了組合數(shù)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y,恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),有f(x)<0.
(Ⅰ)求證:f(x)為奇函數(shù)且在R上是減函數(shù);
(Ⅱ)若正數(shù)x,y滿足
1
x
+
4
y
=1,且f(x)+f(y)+f(1-m)<0恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x2+x-2-a(x+x-1)+a+2(x>0)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足:x+y=
π
4
且x,y≠kπ+
π
2
(k∈Z),則(1+tanx)(1+tany)=( 。
A、-2B、2C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x,y的方程組
y=
-x2-2x
x+y-m=0
有兩組不同的解,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在我市2015年“創(chuàng)建文明城市”知識(shí)競(jìng)賽中,考評(píng)組從中抽取200份試卷進(jìn)行分析,其分?jǐn)?shù)的頻率分布直方圖如圖所示,則分?jǐn)?shù)在區(qū)間[60,70)上的人數(shù)大約有
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足an=n2+kn+2,若不等式an≥a4恒成立,則實(shí)數(shù)k的取值范圍是( 。
A、[-9,-8]
B、[-9,-7]
C、(-9,-8)
D、(-9,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[-3,0]時(shí),函數(shù)y=x2+2x+3的最小值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b=3.已知向量
m
=(cos2
B
2
,sinB),
n
=(
3
,2),且
m
n

(1)若A=
12
,求邊c的值;
(2)求AC邊上高h(yuǎn)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案